Abstract

We have realized a novel atom trap in an axicon (conical hollow) mirror, using a frequency-modulated, single-diode laser. Different spatial distributions of trapped atoms such as a ball and a ring are observed. We show that our numerical simulations are consistent with experimental results. In particular, the ring diameter is found to be approximately the separation between the mirror axis and the magnetic field axis. The axicon trap may be useful as a precooled atom source for cold atomic beams, atom funnels, and atom waveguides.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
    [CrossRef] [PubMed]
  2. F. Shimizu, K. Shimizu, and H. Takuma, Opt. Lett. 16, 339 (1991); C. Chesman, E. G. Lima, F. A. M. de Oliveira, S. S. Vianna, and J. W. R. Tabosa, Opt. Lett. 19, 1237 (1994).
    [CrossRef] [PubMed]
  3. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
    [CrossRef] [PubMed]
  4. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Phys. Rev. Lett. 76, 4500 (1996).
    [CrossRef] [PubMed]
  5. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
    [CrossRef] [PubMed]
  6. K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, Opt. Lett. 21, 1177 (1996).
    [CrossRef] [PubMed]
  7. H. R. Noh, J. O. Kim, D. S. Nam, and W. Jhe, Rev. Sci. Instrum. 67, 1431 (1996).
    [CrossRef]
  8. T. Walker, D. Sesko, and C. Wieman, Phys. Rev. Lett. 64, 408 (1990); T. Walker, D. Hoffman, P. Feng, and R. S. Williamson, Phys. Lett. A 163, 309 (1992).
    [CrossRef] [PubMed]

1996 (4)

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

H. R. Noh, J. O. Kim, D. S. Nam, and W. Jhe, Rev. Sci. Instrum. 67, 1431 (1996).
[CrossRef]

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, Opt. Lett. 21, 1177 (1996).
[CrossRef] [PubMed]

1995 (1)

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

T. Walker, D. Sesko, and C. Wieman, Phys. Rev. Lett. 64, 408 (1990); T. Walker, D. Hoffman, P. Feng, and R. S. Williamson, Phys. Lett. A 163, 309 (1992).
[CrossRef] [PubMed]

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Anderson, M. H.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
[CrossRef] [PubMed]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Chu, S.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Cornell, E. A.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
[CrossRef] [PubMed]

Corwin, K. L.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Ensher, J. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
[CrossRef] [PubMed]

Ito, H.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Jhe, W.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

H. R. Noh, J. O. Kim, D. S. Nam, and W. Jhe, Rev. Sci. Instrum. 67, 1431 (1996).
[CrossRef]

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, Opt. Lett. 21, 1177 (1996).
[CrossRef] [PubMed]

Kim, J. A.

Kim, J. O.

H. R. Noh, J. O. Kim, D. S. Nam, and W. Jhe, Rev. Sci. Instrum. 67, 1431 (1996).
[CrossRef]

Lee, K. I.

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, Opt. Lett. 21, 1177 (1996).
[CrossRef] [PubMed]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Lu, Z. T.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Matthews, M. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
[CrossRef] [PubMed]

Nakata, T.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Nam, D. S.

H. R. Noh, J. O. Kim, D. S. Nam, and W. Jhe, Rev. Sci. Instrum. 67, 1431 (1996).
[CrossRef]

Noh, H. R.

H. R. Noh, J. O. Kim, D. S. Nam, and W. Jhe, Rev. Sci. Instrum. 67, 1431 (1996).
[CrossRef]

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, Opt. Lett. 21, 1177 (1996).
[CrossRef] [PubMed]

Ohtsu, M.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Pritchard, D.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Renn, M. J.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Sakaki, K.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Sesko, D.

T. Walker, D. Sesko, and C. Wieman, Phys. Rev. Lett. 64, 408 (1990); T. Walker, D. Hoffman, P. Feng, and R. S. Williamson, Phys. Lett. A 163, 309 (1992).
[CrossRef] [PubMed]

Shimizu, F.

Shimizu, K.

Takuma, H.

Walker, T.

T. Walker, D. Sesko, and C. Wieman, Phys. Rev. Lett. 64, 408 (1990); T. Walker, D. Hoffman, P. Feng, and R. S. Williamson, Phys. Lett. A 163, 309 (1992).
[CrossRef] [PubMed]

Wieman, C.

T. Walker, D. Sesko, and C. Wieman, Phys. Rev. Lett. 64, 408 (1990); T. Walker, D. Hoffman, P. Feng, and R. S. Williamson, Phys. Lett. A 163, 309 (1992).
[CrossRef] [PubMed]

Wieman, C. E.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (4)

T. Walker, D. Sesko, and C. Wieman, Phys. Rev. Lett. 64, 408 (1990); T. Walker, D. Hoffman, P. Feng, and R. S. Williamson, Phys. Lett. A 163, 309 (1992).
[CrossRef] [PubMed]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

H. R. Noh, J. O. Kim, D. S. Nam, and W. Jhe, Rev. Sci. Instrum. 67, 1431 (1996).
[CrossRef]

Science (1)

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of the experimental setup and the polarization configuration in an axicon-mirror atom trap.

Fig. 2
Fig. 2

CCD images of the spatial distributions of trapped rubidium atoms in the axicon mirror, showing (a) spherical and (b) ring-shaped clouds. Their mirror images are also shown on the right-hand side of each cloud image.

Fig. 3
Fig. 3

Measured ring diameter as a function of the separation between the magnetic field axis and the mirror axis (or the origin). The data are in good agreement with the unit-slope lines of ring diameter that are equal to separation (see text for details). Note that the three squares near the origin correspond to ball-shaped clouds.

Fig. 4
Fig. 4

(a) Optical force fields acting on atoms at rest. The resulting force-free contour is obtained as a circle. (b) Typical atomic trajectory in the axicon mirror trap. The atom’s initial position is x=y=-0.5 cm, and its initial velocity is vx=8 m/s, vy=7.5 m/s.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σˆ+=12sin θˆ0+121-cos θˆ- +121+cos θˆ+, σˆ-=12sin θˆ0+121+cos θˆ- +121-cos θˆ+,
P0+1σ±=141±cos θ2, P0-1σ±=141cos θ2, P00σ±=12 sin2θ.
F=Fσ--Fσ+=P0-1σ-fΔ-δB-k·v+P00σ-fΔ-k·v+P0+1σ-fΔ+δB-k·v-P0+1σ+fΔ+δB+k·v-P00σ+fΔ+k·v-P0-1σ+fΔ-δB+k·v,
fδ=I/Is1+I/Is+4δ/Γ2kΓ2.

Metrics