Abstract

We report on the characterization and compression of the white-light continuum produced by injection of a 13-fs pulse from a cavity-dumped self-mode-locked Ti:sapphire laser into a single-mode fiber. Pulses as short as 5 fs were generated at repetition rates up to 1 MHz.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, Opt. Lett. 19, 1149 (1994).
    [CrossRef] [PubMed]
  2. A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szipöcz, Opt. Lett. 20, 602 (1995).
    [CrossRef] [PubMed]
  3. A. Kasper and K. J. Witte, Opt. Lett. 21, 360 (1996).
    [CrossRef] [PubMed]
  4. L. Xu, Ch. Spielmann, F. Krauz, and R. Szipöcz, Opt. Lett. 21, 1259 (1996).
    [CrossRef] [PubMed]
  5. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, Opt. Lett. 18, 1822 (1993).
    [CrossRef] [PubMed]
  6. M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Opt. Lett. 19, 572 (1994).
    [CrossRef] [PubMed]
  7. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, J. Phys. Chem. 100, 11806 (1996).
  8. M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, Phys. Rev. Lett. 74, 674 (1995); P. Vöhringer, D. C. Arnett, T.-S. Yang, and N. F. Scherer, Chem. Phys. Lett. 237, 387 (1995).
    [CrossRef] [PubMed]
  9. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).
  10. B. J. Schwartz and P. J. Rossky, J. Mol. Liq. 65/66, 23 (1995).
    [CrossRef]
  11. Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, Science 266, 422 (1994).
    [CrossRef] [PubMed]
  12. R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, Opt. Lett. 12, 483 (1987).
    [CrossRef] [PubMed]
  13. S. T. Cundiff, W. N. Knox, E. P. Ippen, and H. A. Haus, Opt. Lett. 21, 662 (1996).
    [CrossRef] [PubMed]
  14. M. Lenzner, Ch. Spielmann, E. Wintner, F. Krausz, and A. J. Schmidt, Opt. Lett. 20, 1397 (1995); Ch. Spielmann, M. Lenzner, F. Krausz, and R. Szipöcs, Opt. Commun. 120, 321 (1995).
    [CrossRef] [PubMed]
  15. R. Szipöcs and A. Kohazi-Kis, Proc. SPIE 2253, 140 (1994).
    [CrossRef]
  16. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
    [CrossRef]
  17. J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
    [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1989) Chap. 2, p. 34.
  19. C. H. Brito Cruz, P. C. Becker, R. L. Fork, and C. V. Shank, Opt. Lett. 13, 123 (1988); B. E. Lemoff and C. P. J. Barty, Opt. Lett. 18, 1651 (1993). Note that Eq. (4) in the former paper is approximate since it neglects the beam propagation through the first prism.
    [CrossRef] [PubMed]
  20. The GVD of the grating compressor was calculated according to E. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]
  21. The GVD of the chirped mirrors was provided by the supplier: R. Szipöcz, R&D Lezer-Optika Bt. (Budapest, Hungary). For dispersion measurements see also A. P. Kovacs, K. Osvay, Z. Bor, and R. Szipöcs, Opt. Lett. 20, 788 (1995).
    [CrossRef]
  22. A more favorable ratio between the third- and second-order GVD was found for prisms with a smaller than conventionally used Brewster apex angle.
  23. Historically, there is some confusion about this definition. To quote a number of optical cycles makes sense only if one refers to the electric-field envelope, which is longer than the duration of the pulse intensity envelope by a factor of ∼1.5. Therefore the electric-field envelope of our 5-fs pulse contains ∼2.7 optical cycles at FWHM.
  24. M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
    [CrossRef]

1996 (5)

1995 (5)

A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szipöcz, Opt. Lett. 20, 602 (1995).
[CrossRef] [PubMed]

M. Lenzner, Ch. Spielmann, E. Wintner, F. Krausz, and A. J. Schmidt, Opt. Lett. 20, 1397 (1995); Ch. Spielmann, M. Lenzner, F. Krausz, and R. Szipöcs, Opt. Commun. 120, 321 (1995).
[CrossRef] [PubMed]

M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, Phys. Rev. Lett. 74, 674 (1995); P. Vöhringer, D. C. Arnett, T.-S. Yang, and N. F. Scherer, Chem. Phys. Lett. 237, 387 (1995).
[CrossRef] [PubMed]

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).

B. J. Schwartz and P. J. Rossky, J. Mol. Liq. 65/66, 23 (1995).
[CrossRef]

1994 (4)

1993 (1)

1992 (1)

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

1988 (1)

1987 (1)

1984 (1)

1969 (1)

The GVD of the grating compressor was calculated according to E. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1989) Chap. 2, p. 34.

Becker, P. C.

Brito Cruz, C. H.

Christov, I. P.

Cundiff, S. T.

de Boeij, W. P.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, J. Phys. Chem. 100, 11806 (1996).

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).

M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Opt. Lett. 19, 572 (1994).
[CrossRef] [PubMed]

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Duppen, K.

M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, Phys. Rev. Lett. 74, 674 (1995); P. Vöhringer, D. C. Arnett, T.-S. Yang, and N. F. Scherer, Chem. Phys. Lett. 237, 387 (1995).
[CrossRef] [PubMed]

Foing, J.-P.

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

Fork, R. L.

Fujimoto, J. G.

Haus, H. A.

Huang, C.-P.

Ippen, E. P.

Joffre, M.

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

Kapteyn, H. C.

Kasper, A.

Knox, W. N.

Kohazi-Kis, A.

R. Szipöcs and A. Kohazi-Kis, Proc. SPIE 2253, 140 (1994).
[CrossRef]

Krausz, F.

Krauz, F.

Lenzner, M.

Likforman, J.-P.

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

Mathies, R. A.

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, Science 266, 422 (1994).
[CrossRef] [PubMed]

Migus, A.

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

Murnane, M. M.

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Paye, J.

Peteanu, L. A.

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, Science 266, 422 (1994).
[CrossRef] [PubMed]

Pshenichnikov, M. S.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, J. Phys. Chem. 100, 11806 (1996).

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).

M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, Phys. Rev. Lett. 74, 674 (1995); P. Vöhringer, D. C. Arnett, T.-S. Yang, and N. F. Scherer, Chem. Phys. Lett. 237, 387 (1995).
[CrossRef] [PubMed]

M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Opt. Lett. 19, 572 (1994).
[CrossRef] [PubMed]

Ramaswamy, M.

Rossky, P. J.

B. J. Schwartz and P. J. Rossky, J. Mol. Liq. 65/66, 23 (1995).
[CrossRef]

Schmidt, A. J.

Schoenlein, R. W.

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, Science 266, 422 (1994).
[CrossRef] [PubMed]

Schwartz, B. J.

B. J. Schwartz and P. J. Rossky, J. Mol. Liq. 65/66, 23 (1995).
[CrossRef]

Shank, C. V.

Spielmann, Ch.

Stingl, A.

Stolen, R. H.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Szipöcs, R.

R. Szipöcs and A. Kohazi-Kis, Proc. SPIE 2253, 140 (1994).
[CrossRef]

Szipöcz, R.

L. Xu, Ch. Spielmann, F. Krauz, and R. Szipöcz, Opt. Lett. 21, 1259 (1996).
[CrossRef] [PubMed]

A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szipöcz, Opt. Lett. 20, 602 (1995).
[CrossRef] [PubMed]

The GVD of the chirped mirrors was provided by the supplier: R. Szipöcz, R&D Lezer-Optika Bt. (Budapest, Hungary). For dispersion measurements see also A. P. Kovacs, K. Osvay, Z. Bor, and R. Szipöcs, Opt. Lett. 20, 788 (1995).
[CrossRef]

Taft, G.

Tomlinson, W. J.

Treacy, E.

The GVD of the grating compressor was calculated according to E. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Ulman, M.

Wang, Q.

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, Science 266, 422 (1994).
[CrossRef] [PubMed]

Wiersma, D. A.

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, J. Phys. Chem. 100, 11806 (1996).

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).

M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, Phys. Rev. Lett. 74, 674 (1995); P. Vöhringer, D. C. Arnett, T.-S. Yang, and N. F. Scherer, Chem. Phys. Lett. 237, 387 (1995).
[CrossRef] [PubMed]

M. S. Pshenichnikov, W. P. de Boeij, and D. A. Wiersma, Opt. Lett. 19, 572 (1994).
[CrossRef] [PubMed]

Wintner, E.

Witte, K. J.

Xu, L.

Zhou, J.

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Chem. Phys. Lett. (1)

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Chem. Phys. Lett. 238, 1 (1995).

IEEE J. Quantum Electron. (2)

The GVD of the grating compressor was calculated according to E. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

J.-P. Foing, J.-P. Likforman, M. Joffre, and A. Migus, IEEE J. Quantum Electron. 28, 2285 (1992).
[CrossRef]

J. Mol. Liq. (1)

B. J. Schwartz and P. J. Rossky, J. Mol. Liq. 65/66, 23 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, J. Phys. Chem. 100, 11806 (1996).

Opt. Lett. (10)

Phys. Rev. Lett. (1)

M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, Phys. Rev. Lett. 74, 674 (1995); P. Vöhringer, D. C. Arnett, T.-S. Yang, and N. F. Scherer, Chem. Phys. Lett. 237, 387 (1995).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. Szipöcs and A. Kohazi-Kis, Proc. SPIE 2253, 140 (1994).
[CrossRef]

Science (1)

Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, Science 266, 422 (1994).
[CrossRef] [PubMed]

Other (4)

The GVD of the chirped mirrors was provided by the supplier: R. Szipöcz, R&D Lezer-Optika Bt. (Budapest, Hungary). For dispersion measurements see also A. P. Kovacs, K. Osvay, Z. Bor, and R. Szipöcs, Opt. Lett. 20, 788 (1995).
[CrossRef]

A more favorable ratio between the third- and second-order GVD was found for prisms with a smaller than conventionally used Brewster apex angle.

Historically, there is some confusion about this definition. To quote a number of optical cycles makes sense only if one refers to the electric-field envelope, which is longer than the duration of the pulse intensity envelope by a factor of ∼1.5. Therefore the electric-field envelope of our 5-fs pulse contains ∼2.7 optical cycles at FWHM.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1989) Chap. 2, p. 34.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Layout of the experimental setup. RM, roof mirror; BS1, BS2, and BS3, 25%, 50%, and 50% 1-mm-thick, 800-nm centered beam splitters; P1–P4 60° fused-silica prisms; CP, dispersion-compensation plate; PMT’s, photomultiplier tubes; BBO, β-barium borate crystal. Mirror M1 is inserted for cross-correlation measurements. The beam returning from the grating/chirped mirrors compressor passes just above mirror M3. The radius of curvature of mirror M2 is 25 cm, and that for mirrors M4 and M5 is 10 cm. Mirror M5 is an aluminum mirror; all others are unprotected gold-coated mirrors. The diffraction gratings (Milton Roy) have 150 grooves/mm and a reflectivity of 78% at 800 nm.

Fig. 2
Fig. 2

(a) Fiber (solid curve) and cavity-dumped laser (filled contour) output spectra, (b) the chirp of the white-light continuum; (c) the residual phase after group-velocity dispersion compensation. The filled circles denote cross-correlation signal maxima derived from the temporal profiles (insets). Upconverted signal wavelengths are given in the upper-right corners of the insets. The solid curve in (b) represents a polynomial approximation to the chirp used in calculations. The dashed curve in (b) displays the GVD (shown with the opposite sign) of the prism–grating compressor with the following optical parameters: prism separation of 56 cm; optical pathway of 3 mm inside prisms P1 and P4 and 1.5 mm in the autocorrelator (BS2–BS3); cutoff wavelength of 600 nm at the tips of prisms P2 and P3; a 20° incidence angle at the grating; and a grating separation of 4.5 mm.

Fig. 3
Fig. 3

Interferometric autocorrelations obtained by (a) prism–grating and (b) prism–chirped mirror compressors. The filled circles are experimental points; the solid curves are fits as described in the text. The spectra and the intensity profiles (the solid curves with the residual phase and the dotted curves with zero phase) of the pulses are shown in the insets.

Metrics