Abstract

A modulator is reported in which an extensional acoustic wave is launched along a fiber Bragg grating. The acousto-optic superlattice effect causes an enhancement in reflectivity within a narrow spectral region on both sides of the Bragg wavelength. For a fixed acoustic propagation direction, the Doppler shift can be either positive or negative, depending on whether the wavelength of the incident light lies above or below the Bragg condition. The device can function as a Bragg cell and a tunable filter.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, Opt. Lett. 11, 389 (1986).
    [CrossRef] [PubMed]
  2. J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, Opt. Lett. 12, 281 (1987).
    [CrossRef] [PubMed]
  3. M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, Electron. Lett. 27, 713 (1991).
    [CrossRef]
  4. T. A. Birks, S. G. Farwell, P. St. J. Russell, and C. N. Pannell, Opt. Lett. 19, 1964 (1994); erratum, Opt. Lett. 21, 231 (1996).
    [CrossRef] [PubMed]
  5. W. F. Liu, P. St. J. Russell, D. O. Culverhouse, and L. Reekie, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 243–244.
  6. P. St. J. Russell, Phys. Rev. Lett. 56, 596 (1986).
    [CrossRef] [PubMed]
  7. P. St. J. Russell, J. Appl. Phys. 59, 3344 (1986).
    [CrossRef]
  8. P. St. J. Russell, J. Mod. Opt. 38, 1599 (1991).
    [CrossRef]
  9. H. Kolsky, Stress Waves in Solids (Oxford U. Press, London, 1953), Chap III.

1994 (1)

1991 (2)

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, Electron. Lett. 27, 713 (1991).
[CrossRef]

P. St. J. Russell, J. Mod. Opt. 38, 1599 (1991).
[CrossRef]

1987 (1)

1986 (3)

B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef] [PubMed]

P. St. J. Russell, Phys. Rev. Lett. 56, 596 (1986).
[CrossRef] [PubMed]

P. St. J. Russell, J. Appl. Phys. 59, 3344 (1986).
[CrossRef]

Berwick, M.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, Electron. Lett. 27, 713 (1991).
[CrossRef]

Birks, T. A.

Blake, J. N.

Culverhouse, D. O.

W. F. Liu, P. St. J. Russell, D. O. Culverhouse, and L. Reekie, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 243–244.

Engan, H. E.

Farwell, S. G.

Jackson, D. A.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, Electron. Lett. 27, 713 (1991).
[CrossRef]

Kim, B. Y.

Kolsky, H.

H. Kolsky, Stress Waves in Solids (Oxford U. Press, London, 1953), Chap III.

Liu, W. F.

W. F. Liu, P. St. J. Russell, D. O. Culverhouse, and L. Reekie, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 243–244.

Pannell, C. N.

Reekie, L.

W. F. Liu, P. St. J. Russell, D. O. Culverhouse, and L. Reekie, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 243–244.

Russell, P. St. J.

T. A. Birks, S. G. Farwell, P. St. J. Russell, and C. N. Pannell, Opt. Lett. 19, 1964 (1994); erratum, Opt. Lett. 21, 231 (1996).
[CrossRef] [PubMed]

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, Electron. Lett. 27, 713 (1991).
[CrossRef]

P. St. J. Russell, J. Mod. Opt. 38, 1599 (1991).
[CrossRef]

P. St. J. Russell, Phys. Rev. Lett. 56, 596 (1986).
[CrossRef] [PubMed]

P. St. J. Russell, J. Appl. Phys. 59, 3344 (1986).
[CrossRef]

W. F. Liu, P. St. J. Russell, D. O. Culverhouse, and L. Reekie, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 243–244.

Shaw, H. J.

Electron. Lett. (1)

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, Electron. Lett. 27, 713 (1991).
[CrossRef]

J. Appl. Phys. (1)

P. St. J. Russell, J. Appl. Phys. 59, 3344 (1986).
[CrossRef]

J. Mod. Opt. (1)

P. St. J. Russell, J. Mod. Opt. 38, 1599 (1991).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

P. St. J. Russell, Phys. Rev. Lett. 56, 596 (1986).
[CrossRef] [PubMed]

Other (2)

H. Kolsky, Stress Waves in Solids (Oxford U. Press, London, 1953), Chap III.

W. F. Liu, P. St. J. Russell, D. O. Culverhouse, and L. Reekie, in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 243–244.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Frequency wave-vector diagram for a Bragg grating. The group velocity is proportional to the slope of the curves. In case  A, a forward-traveling acoustic wave [ωs, ks vector shown by the arrow from b1 to f1] couples a forward-traveling Bloch wave f1 into a downshifted backward one b1. In case B, forward Bloch wave f2 is coupled into anomalously downshifted backward Bloch wave b2 by backward-traveling acoustic wave. The thick horizontal dashed lines join the ω, k points of the forward and backward fiber modes of each Bloch wave.

Fig. 2
Fig. 2

Experimental setup for monitoring the response of AOSLM. Light from a tunable single-frequency diode laser (TL) is divided at a fused taper coupler (FC1), one half going to the fiber Bragg grating (FBG) and the other to a bulk Bragg cell (BC). The light reflected from the AOSLM is combined with the frequency-shifted light from the Bragg cell at a second coupler (FC2), and the mixed signal is detected at a square-law detector (D); the redundant light in the second arm of FC2 is eliminated in an index-matching cell (IMC). A piezoelectric transducer (PZT) and a fused-silica horn (SH) are used to excite the AOSLM.

Fig. 3
Fig. 3

Reflectivity spectrum of the undistributed Bragg grating (top) and the spectrum of the enhancement in reflectivity due to the acoustic wave (bottom).

Fig. 4
Fig. 4

RF spectra at the detector for sidelobes at λ>λB (top) and λ<λB (bottom). The peak at 8  MHz is caused by beating between the unshifted and the shifted Bragg grating reflections. The presence of a band on the low-frequency side of the 80-MHz reference signal indicates that the AOSLM signal is frequency upshifted.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k=±K+ϑ1-2κ/ϑ21/2/2,
z-no2Mno2=cosKz+a sinksz=J0a cos Kz+n=1JnacosKz+nksz+-1n cosKz-nksz,
cΔλλ2Δν=c2nofsνs2+κπ21/2cfs2noνs,

Metrics