Abstract

Most commonly used methods for three-dimensional (3D) fluorescence microscopy make use of sectioning techniques that require that the object be physically scanned in a series of two-dimensional (2D) sections along the z axis. The main drawback in these approaches is the need for these sequential 2D scans. An alternative approach to fluorescence imaging in three dimensions has been developed that is based on optical scanning holography. This novel approach requires only a 2D scan to record 3D information. Holograms of 15-µm fluorescent latex beads with longitinal separation of 2 mm have been recorded and reconstructed. To our knowledge, this is the first time holograms of fluorescent specimens have been recorded by an optical holographic technique.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Ploem, Appl. Opt. 26, 3226 (1987).
    [CrossRef] [PubMed]
  2. D. J. Arndt-Jovin, M. Robert-Nicoud, S. J. Kaufman, and T. M. Jovin, Science 230, 247 (1985).
    [CrossRef] [PubMed]
  3. S. Hell and E. H. K. Stelzer, J. Opt. Soc. Am. A 9, 2159 (1992).
    [CrossRef]
  4. S. Kimura and C. Munakata, Appl. Opt. 29, 489 (1990).
    [CrossRef] [PubMed]
  5. T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Proc. IEEE 84, 753 (1996).
    [CrossRef]
  6. T.-C. Poon and A. Korpel, Opt. Lett. 4, 317 (1979).
    [CrossRef] [PubMed]
  7. T.-C. Poon, J. Opt. Soc. Am. A 2, 521 (1985).
    [CrossRef]
  8. T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Eng. 34, 1338 (1995).
    [CrossRef]
  9. L. Mertz and N. O. Young, Proceedings of the Conference on Optical Instruments and Techniques, K. J. Hall, ed. (Chapman & Hall, London, 1962), pp. 305–317.
  10. K. Doh, T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Laser Technol. 28, 135 (1996).
    [CrossRef]
  11. A. Kozma and N. Massey, Appl. Opt. 8, 393 (1969).
    [CrossRef] [PubMed]
  12. R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals, 5th ed. (Molecular Probes, Inc., Eugene, Ore., 1992).
  13. P. C. Cheng, T. H. Lin, W. L. Wu, and J. L. Wu, Multidimensional Microscopy (Springer-Verlag, New York, 1994).
    [CrossRef]

1996 (2)

T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Proc. IEEE 84, 753 (1996).
[CrossRef]

K. Doh, T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Laser Technol. 28, 135 (1996).
[CrossRef]

1995 (1)

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Eng. 34, 1338 (1995).
[CrossRef]

1992 (1)

1990 (1)

1987 (1)

1985 (2)

D. J. Arndt-Jovin, M. Robert-Nicoud, S. J. Kaufman, and T. M. Jovin, Science 230, 247 (1985).
[CrossRef] [PubMed]

T.-C. Poon, J. Opt. Soc. Am. A 2, 521 (1985).
[CrossRef]

1979 (1)

1969 (1)

Arndt-Jovin, D. J.

D. J. Arndt-Jovin, M. Robert-Nicoud, S. J. Kaufman, and T. M. Jovin, Science 230, 247 (1985).
[CrossRef] [PubMed]

Cheng, P. C.

P. C. Cheng, T. H. Lin, W. L. Wu, and J. L. Wu, Multidimensional Microscopy (Springer-Verlag, New York, 1994).
[CrossRef]

Doh, K.

K. Doh, T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Laser Technol. 28, 135 (1996).
[CrossRef]

Doh, K. B.

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Eng. 34, 1338 (1995).
[CrossRef]

Haugland, R. P.

R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals, 5th ed. (Molecular Probes, Inc., Eugene, Ore., 1992).

Hell, S.

Jovin, T. M.

D. J. Arndt-Jovin, M. Robert-Nicoud, S. J. Kaufman, and T. M. Jovin, Science 230, 247 (1985).
[CrossRef] [PubMed]

Kaufman, S. J.

D. J. Arndt-Jovin, M. Robert-Nicoud, S. J. Kaufman, and T. M. Jovin, Science 230, 247 (1985).
[CrossRef] [PubMed]

Kimura, S.

Korpel, A.

Kozma, A.

Lin, T. H.

P. C. Cheng, T. H. Lin, W. L. Wu, and J. L. Wu, Multidimensional Microscopy (Springer-Verlag, New York, 1994).
[CrossRef]

Massey, N.

Mertz, L.

L. Mertz and N. O. Young, Proceedings of the Conference on Optical Instruments and Techniques, K. J. Hall, ed. (Chapman & Hall, London, 1962), pp. 305–317.

Munakata, C.

Ploem, J. S.

Poon, T.-C.

T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Proc. IEEE 84, 753 (1996).
[CrossRef]

K. Doh, T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Laser Technol. 28, 135 (1996).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Eng. 34, 1338 (1995).
[CrossRef]

T.-C. Poon, J. Opt. Soc. Am. A 2, 521 (1985).
[CrossRef]

T.-C. Poon and A. Korpel, Opt. Lett. 4, 317 (1979).
[CrossRef] [PubMed]

Robert-Nicoud, M.

D. J. Arndt-Jovin, M. Robert-Nicoud, S. J. Kaufman, and T. M. Jovin, Science 230, 247 (1985).
[CrossRef] [PubMed]

Schilling, B. W.

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Eng. 34, 1338 (1995).
[CrossRef]

Shinoda, K.

K. Doh, T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Laser Technol. 28, 135 (1996).
[CrossRef]

T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Proc. IEEE 84, 753 (1996).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Eng. 34, 1338 (1995).
[CrossRef]

Stelzer, E. H. K.

Suzuki, Y.

T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Proc. IEEE 84, 753 (1996).
[CrossRef]

K. Doh, T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Laser Technol. 28, 135 (1996).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Eng. 34, 1338 (1995).
[CrossRef]

Wu, J. L.

P. C. Cheng, T. H. Lin, W. L. Wu, and J. L. Wu, Multidimensional Microscopy (Springer-Verlag, New York, 1994).
[CrossRef]

Wu, M. H.

K. Doh, T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Laser Technol. 28, 135 (1996).
[CrossRef]

T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Proc. IEEE 84, 753 (1996).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Eng. 34, 1338 (1995).
[CrossRef]

Wu, W. L.

P. C. Cheng, T. H. Lin, W. L. Wu, and J. L. Wu, Multidimensional Microscopy (Springer-Verlag, New York, 1994).
[CrossRef]

Young, N. O.

L. Mertz and N. O. Young, Proceedings of the Conference on Optical Instruments and Techniques, K. J. Hall, ed. (Chapman & Hall, London, 1962), pp. 305–317.

Appl. Opt. (3)

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Eng. 34, 1338 (1995).
[CrossRef]

Opt. Laser Technol. (1)

K. Doh, T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Opt. Laser Technol. 28, 135 (1996).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

T.-C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, Proc. IEEE 84, 753 (1996).
[CrossRef]

Science (1)

D. J. Arndt-Jovin, M. Robert-Nicoud, S. J. Kaufman, and T. M. Jovin, Science 230, 247 (1985).
[CrossRef] [PubMed]

Other (3)

L. Mertz and N. O. Young, Proceedings of the Conference on Optical Instruments and Techniques, K. J. Hall, ed. (Chapman & Hall, London, 1962), pp. 305–317.

R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals, 5th ed. (Molecular Probes, Inc., Eugene, Ore., 1992).

P. C. Cheng, T. H. Lin, W. L. Wu, and J. L. Wu, Multidimensional Microscopy (Springer-Verlag, New York, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram of the experimental setup used to record the hologram of a fluorescent specimen by optical scanning holography. BS's, beam splitters; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Hologram of a fluorescent specimen recorded by OSH. The object consists of two drops of solution containing a high concentration of fluorescent latex beads separated in depth by 2 mm. The image is a 256-level gray-scale image consisting of 256 by 256  pixels. The area scanned is approximately 2.0 mm×2.0 mm.

Fig. 3
Fig. 3

Reconstruction of the hologram shown in Fig.  2 at a depth of z0=34.5 mm. The arrow shows individual fluorescent beads that are in focus at this depth.

Fig. 4
Fig. 4

Reconstruction of the hologram shown in Fig.  2 at a depth of z1=36.8 mm. The arrow shows four individual fluorescent beads that are in focus at this depth.

Metrics