Abstract

We demonstrate that traveling-wave second-harmonic generation produces amplitude-squeezed light at both the fundamental and the harmonic frequencies. Quasi-phase-matched second-harmonic conversion efficiencies approaching 60% were obtained in a 26-mm-long single-mode LiNbO3 waveguide with pulses from a mode-locked laser at 1.53 µm. The amplitude noise of the transmitted fundamental field was measured to be 0.8  dB below the shot-noise level, and the generated 0.765-µm harmonic light was measured to be amplitude squeezed by 0.35  dB. The conversion-efficiency dependence of the observed squeezing at both wavelengths agrees with theoretical predictions. Waveguide losses appear to degrade the squeezing, but the maximum observed squeezing is currently limited only by the available input power.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Wu, M. Xiao, and H. J. Kimble, J. Opt. Soc. Am. B 4, 1465 (1987); R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, and M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); E. S. Polzik, J. Carri, and H. J. Kimble, Appl. Phys. B 55, 279 (1992); C. Kim and P. Kumar, Phys. Rev. Lett. 73, 1605 (1994); G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, J. Opt. Soc. Am. B 12, 2304 (1995).
    [Crossref] [PubMed]
  2. S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, Phys. Rev. A 38, 4931 (1988); R. Paschotta, M. Collett, P. Kurz, K. Fiedler, H. A. Bachor, and J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
    [Crossref] [PubMed]
  3. S. Youn, S.-K. Choi, P. Kumar, and R.-D. Li, Opt. Lett. 21, 1597 (1996).
    [Crossref] [PubMed]
  4. L. Mandel, Opt. Commun. 42, 437 (1982).
    [Crossref]
  5. M. E. Anderson, M. Beck, M. G. Raymer, and J. D. Bierlein, Opt. Lett. 20, 620 (1995); M. E. Anderson, D. F. McAlister, M. G. Raymer, and M. C. Gupta, “Pulsed squeezed light generation in χ2 nonlinear waveguides,” J. Opt. Soc. Am. B (to be published).
    [Crossref] [PubMed]
  6. D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, Opt. Lett. 20, 1649 (1995).
    [Crossref] [PubMed]
  7. R.-D. Li and P. Kumar, Opt. Lett. 18, 1961 (1993); Z. Y. Ou, Phys. Rev. A 49, 2106 (1994); R.-D. Li and P. Kumar, Phys. Rev. A 49, 2157 (1994).
    [Crossref] [PubMed]
  8. M. A. Arbore and M. M. Fejer, Opt. Lett. 22, 151 (1997).
    [Crossref] [PubMed]
  9. D. K. Serkland, P. Kumar, M. A. Arbore, and M. M. Fejer, in Quantum Communication, Computing, and Measurement, O. Hirota, A. S. Holevo, and C. M. Caves, eds. (Plenum, New York, 1997), p. 433.
    [Crossref]

1997 (1)

1996 (1)

1995 (2)

1993 (1)

1988 (1)

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, Phys. Rev. A 38, 4931 (1988); R. Paschotta, M. Collett, P. Kurz, K. Fiedler, H. A. Bachor, and J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
[Crossref] [PubMed]

1987 (1)

1982 (1)

L. Mandel, Opt. Commun. 42, 437 (1982).
[Crossref]

Anderson, M. E.

Arbore, M. A.

M. A. Arbore and M. M. Fejer, Opt. Lett. 22, 151 (1997).
[Crossref] [PubMed]

D. K. Serkland, P. Kumar, M. A. Arbore, and M. M. Fejer, in Quantum Communication, Computing, and Measurement, O. Hirota, A. S. Holevo, and C. M. Caves, eds. (Plenum, New York, 1997), p. 433.
[Crossref]

Beck, M.

Bierlein, J. D.

Byer, R. L.

Choi, S.-K.

Fejer, M. M.

M. A. Arbore and M. M. Fejer, Opt. Lett. 22, 151 (1997).
[Crossref] [PubMed]

D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, Opt. Lett. 20, 1649 (1995).
[Crossref] [PubMed]

D. K. Serkland, P. Kumar, M. A. Arbore, and M. M. Fejer, in Quantum Communication, Computing, and Measurement, O. Hirota, A. S. Holevo, and C. M. Caves, eds. (Plenum, New York, 1997), p. 433.
[Crossref]

Hall, J. L.

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, Phys. Rev. A 38, 4931 (1988); R. Paschotta, M. Collett, P. Kurz, K. Fiedler, H. A. Bachor, and J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
[Crossref] [PubMed]

Kimble, H. J.

Kumar, P.

S. Youn, S.-K. Choi, P. Kumar, and R.-D. Li, Opt. Lett. 21, 1597 (1996).
[Crossref] [PubMed]

R.-D. Li and P. Kumar, Opt. Lett. 18, 1961 (1993); Z. Y. Ou, Phys. Rev. A 49, 2106 (1994); R.-D. Li and P. Kumar, Phys. Rev. A 49, 2157 (1994).
[Crossref] [PubMed]

D. K. Serkland, P. Kumar, M. A. Arbore, and M. M. Fejer, in Quantum Communication, Computing, and Measurement, O. Hirota, A. S. Holevo, and C. M. Caves, eds. (Plenum, New York, 1997), p. 433.
[Crossref]

Li, R.-D.

Mandel, L.

L. Mandel, Opt. Commun. 42, 437 (1982).
[Crossref]

Pereira, S. F.

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, Phys. Rev. A 38, 4931 (1988); R. Paschotta, M. Collett, P. Kurz, K. Fiedler, H. A. Bachor, and J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
[Crossref] [PubMed]

Raymer, M. G.

Serkland, D. K.

D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, Opt. Lett. 20, 1649 (1995).
[Crossref] [PubMed]

D. K. Serkland, P. Kumar, M. A. Arbore, and M. M. Fejer, in Quantum Communication, Computing, and Measurement, O. Hirota, A. S. Holevo, and C. M. Caves, eds. (Plenum, New York, 1997), p. 433.
[Crossref]

Wu, L. A.

Xiao, M.

Yamamoto, Y.

Youn, S.

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

L. Mandel, Opt. Commun. 42, 437 (1982).
[Crossref]

Opt. Lett. (5)

Phys. Rev. A (1)

S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, Phys. Rev. A 38, 4931 (1988); R. Paschotta, M. Collett, P. Kurz, K. Fiedler, H. A. Bachor, and J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
[Crossref] [PubMed]

Other (1)

D. K. Serkland, P. Kumar, M. A. Arbore, and M. M. Fejer, in Quantum Communication, Computing, and Measurement, O. Hirota, A. S. Holevo, and C. M. Caves, eds. (Plenum, New York, 1997), p. 433.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experiment, configured for measurement of noise at the harmonic frequency by direct detection. The amplitude noise of the transmitted fundamental was measured similarly with a separate resonant detector (not shown).

Fig. 2
Fig. 2

Fundamental squeezing versus conversion efficiency. Theoretical predictions for cw (dashed curve) and pulsed (solid curve) squeezing are shown for η1eff=0.55. The inset shows the detected noise at 43  MHz versus time during a complete squeezing scan, where amplitude, shot, and electronic noise are each measured for 10  s.

Fig. 3
Fig. 3

Second-harmonic squeezing versus conversion efficiency. Theoretical predictions for cw (dashed curve) and pulsed (solid curve) squeezing are shown for η2eff=0.45.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S1=1-ζ tanh ζ2+2 tanh2 ζ sech2 ζ,
S2=2-1tanh ζ+ζ sech2 ζ2+ sech4 ζ,
f¯=A-1-T/2T/2fζtgtdt,

Metrics