Abstract

Application and characterization of large-format IR focal-plane arrays as detectors for ultrafast, high-resolution IR spectroscopy are discussed. We also present generation of broadband IR probe–reference pulses by use of collinear non-phase-matched geometry and shot-to-shot dual-track normalization to obtain transient spectra from broadly absorbing hydrogen-bonded systems. As much as 400-cm-1-wide coverage with 15-cm-1 FWHM spectral resolution and ±6.4×10-4 ΔOD=3×10-4 baseline standard deviation ±1σ is demonstrated near 2.9  µm.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Weitz, J. Phys. Chem. 98, 11256 (1994); S. P. Church, F.-W. Grevels, H. Hermann, and K. Schaffner, Inorg. Chem. 24, 418 (1985); K. G. Spears, X. Zhu, X. Yang, and L. Wang, Opt. Commun. 66, 167 (1988); P. Hamm, S. Wiemann, M. Zurek, and W. Zinth, Opt. Lett. 19, 1642 (1994); B. Akhremitchev, C. Wang, and G. C. Walker, Rev. Sci. Instrum. 66, 3799 (1996).
    [CrossRef] [PubMed]
  2. H. Graener, T. Losch, and A. Laubereau, J. Chem. Phys. 93, 5365 (1990); P. A. Anfinrud, C. Han, T. Lian, and R. M. Hochstrasser, J. Phys. Chem. 94, 1180 (1990); K. G. Spears, X. Wen, and S. M. Arrivo, J. Phys. Chem. 98, 9693 (1994).
    [CrossRef]
  3. T. P. Dougherty and E. J. Heilweil, Opt. Lett. 19, 129 (1994); E. J. Heilweil, Opt. Lett. 14, 551 (1989).
    [CrossRef] [PubMed]
  4. Commercial equipment is identified but in no case does such identification imply recommendation or endorsement by NIST.
  5. A. Yariv and Y. Poctti, Quantum Electronics (Wiley, New York, 1983), Chap.  12, p. 520.
  6. S. M. Arrivo and E. J. Heilweil, J. Phys. Chem. 100, 11975 (1996).
    [CrossRef]
  7. L. H. Kidder, I. W. Levin, E. N. Lewis, V. D. Kleiman, and E. J. Heilweil, Opt. Lett. 22, 742 (1997).
    [CrossRef] [PubMed]

1997 (1)

1996 (1)

S. M. Arrivo and E. J. Heilweil, J. Phys. Chem. 100, 11975 (1996).
[CrossRef]

1994 (2)

T. P. Dougherty and E. J. Heilweil, Opt. Lett. 19, 129 (1994); E. J. Heilweil, Opt. Lett. 14, 551 (1989).
[CrossRef] [PubMed]

E. Weitz, J. Phys. Chem. 98, 11256 (1994); S. P. Church, F.-W. Grevels, H. Hermann, and K. Schaffner, Inorg. Chem. 24, 418 (1985); K. G. Spears, X. Zhu, X. Yang, and L. Wang, Opt. Commun. 66, 167 (1988); P. Hamm, S. Wiemann, M. Zurek, and W. Zinth, Opt. Lett. 19, 1642 (1994); B. Akhremitchev, C. Wang, and G. C. Walker, Rev. Sci. Instrum. 66, 3799 (1996).
[CrossRef] [PubMed]

1990 (1)

H. Graener, T. Losch, and A. Laubereau, J. Chem. Phys. 93, 5365 (1990); P. A. Anfinrud, C. Han, T. Lian, and R. M. Hochstrasser, J. Phys. Chem. 94, 1180 (1990); K. G. Spears, X. Wen, and S. M. Arrivo, J. Phys. Chem. 98, 9693 (1994).
[CrossRef]

Arrivo, S. M.

S. M. Arrivo and E. J. Heilweil, J. Phys. Chem. 100, 11975 (1996).
[CrossRef]

Dougherty, T. P.

Graener, H.

H. Graener, T. Losch, and A. Laubereau, J. Chem. Phys. 93, 5365 (1990); P. A. Anfinrud, C. Han, T. Lian, and R. M. Hochstrasser, J. Phys. Chem. 94, 1180 (1990); K. G. Spears, X. Wen, and S. M. Arrivo, J. Phys. Chem. 98, 9693 (1994).
[CrossRef]

Heilweil, E. J.

Kidder, L. H.

Kleiman, V. D.

Laubereau, A.

H. Graener, T. Losch, and A. Laubereau, J. Chem. Phys. 93, 5365 (1990); P. A. Anfinrud, C. Han, T. Lian, and R. M. Hochstrasser, J. Phys. Chem. 94, 1180 (1990); K. G. Spears, X. Wen, and S. M. Arrivo, J. Phys. Chem. 98, 9693 (1994).
[CrossRef]

Levin, I. W.

Lewis, E. N.

Losch, T.

H. Graener, T. Losch, and A. Laubereau, J. Chem. Phys. 93, 5365 (1990); P. A. Anfinrud, C. Han, T. Lian, and R. M. Hochstrasser, J. Phys. Chem. 94, 1180 (1990); K. G. Spears, X. Wen, and S. M. Arrivo, J. Phys. Chem. 98, 9693 (1994).
[CrossRef]

Poctti, Y.

A. Yariv and Y. Poctti, Quantum Electronics (Wiley, New York, 1983), Chap.  12, p. 520.

Weitz, E.

E. Weitz, J. Phys. Chem. 98, 11256 (1994); S. P. Church, F.-W. Grevels, H. Hermann, and K. Schaffner, Inorg. Chem. 24, 418 (1985); K. G. Spears, X. Zhu, X. Yang, and L. Wang, Opt. Commun. 66, 167 (1988); P. Hamm, S. Wiemann, M. Zurek, and W. Zinth, Opt. Lett. 19, 1642 (1994); B. Akhremitchev, C. Wang, and G. C. Walker, Rev. Sci. Instrum. 66, 3799 (1996).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv and Y. Poctti, Quantum Electronics (Wiley, New York, 1983), Chap.  12, p. 520.

J. Chem. Phys. (1)

H. Graener, T. Losch, and A. Laubereau, J. Chem. Phys. 93, 5365 (1990); P. A. Anfinrud, C. Han, T. Lian, and R. M. Hochstrasser, J. Phys. Chem. 94, 1180 (1990); K. G. Spears, X. Wen, and S. M. Arrivo, J. Phys. Chem. 98, 9693 (1994).
[CrossRef]

J. Phys. Chem. (2)

S. M. Arrivo and E. J. Heilweil, J. Phys. Chem. 100, 11975 (1996).
[CrossRef]

E. Weitz, J. Phys. Chem. 98, 11256 (1994); S. P. Church, F.-W. Grevels, H. Hermann, and K. Schaffner, Inorg. Chem. 24, 418 (1985); K. G. Spears, X. Zhu, X. Yang, and L. Wang, Opt. Commun. 66, 167 (1988); P. Hamm, S. Wiemann, M. Zurek, and W. Zinth, Opt. Lett. 19, 1642 (1994); B. Akhremitchev, C. Wang, and G. C. Walker, Rev. Sci. Instrum. 66, 3799 (1996).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (2)

Commercial equipment is identified but in no case does such identification imply recommendation or endorsement by NIST.

A. Yariv and Y. Poctti, Quantum Electronics (Wiley, New York, 1983), Chap.  12, p. 520.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Off-phase-matching broadband IR generation by three different-length LiIO 3 crystals. Solid curves, experimental data; dashed curves, result from Eq.  (1). The calculated curves are expanded to match the experimental intensities in the off-phase-matching region. For the 10-mm case, the 15-cm-1 spectral resolution is inadequate to observe the oscillations.

Fig. 2
Fig. 2

(a) Ratio of probe- and reference-beam intensities versus frequency for 2×104 laser shots (five averaged scans) yielding a baseline noise standard deviation of 6.4×10-4. (b) Transient IR spectral response (solid curve) on IR pumping of the v=0-1 of the OH stretch of the dilute hydrogen-bonded triethylsilanol–acetonitrile complex in CCl4 at 295  K. An average of three data files (4000 laser shots each) is shown, with the result smoothed (over 3  pixels). Single baseline scan (4000 laser shots) and static Fourier-transform IR spectrum (maximum OD=0.5). Narrow-band probe data (squares, from Ref.  6) are included for comparison.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

IΘωα sin1/2ΔkΘωl2/1/2ΔkΘωl2.

Metrics