Abstract

We demonstrate the possibility of controlling the symmetry properties of photoinduced χ2 macroscopic susceptibility in polymer films. Ellipsometric adjustment of the write beams allows one to monitor the macroscopic χ2 symmetry from a dipolar to an octupolar configuration. Experimental results are in agreement with an irreducible spherical tensor-based model jointly applied to the molecular β hyperpolarizability and field tensors. We found a purely octupolar polarization-independent photoinduced second-harmonic-generation response in a Dispersed Red  1–methyl methacrylate thin film. Such a configuration, as generated by an octupolar tensor write field tensor made up of counterclockwise circularly polarized ω and 2ω beams, is not within the reach of the classical electric-field poling technique.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zyss, ed., Molecular Nonlinear Optics: Materials, Physics and Devices (Academic, New York, 1994).
  2. K. D. Singer, M. G. Kusyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 19 (1988).
    [Crossref]
  3. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, J. Opt. Soc. Am. B 4, 968 (1987).
    [Crossref]
  4. J. Zyss, Nonlinear Opt. 1, 3 (1991); J. Chem. Phys. 98, 6583 (1993).
    [Crossref]
  5. J. Jerphagnon, D. S. Chemla, and R. Bonneville, Adv. Phys. 27, 609 (1978).
    [Crossref]
  6. S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B, feature on organic and polymeric nonlinear optical materials (to be published).
  7. N. B. Baranova and B. Ya. Zel'dovich, JETP Lett. 45, 716 (1987); N. B. Baranova and B. Ya. Zel'dovich, J. Opt. Soc. Am. B 8, 27 (1991).
    [Crossref]
  8. C. Fiorini, F. Charra, and J. M. Nunzi, J. Opt. Soc. Am. B 11, 2347 (1994).
    [Crossref]
  9. J. M. Nunzi, F. Charra, C. Fiorini, and J. Zyss, Chem. Phys. Lett. 219, 349 (1994).
    [Crossref]
  10. C. Fiorini, F. Charra, J. M. Nunzi, I. D. W. Samuel, and J. Zyss, Opt. Lett. 20, 2469 (1995).
    [Crossref]
  11. C. Fiorini, J. M. Nunzi, F. Charra, I. D. W. Samuel, and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
    [Crossref]
  12. S. Brasselet and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
    [Crossref]

1996 (2)

C. Fiorini, J. M. Nunzi, F. Charra, I. D. W. Samuel, and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
[Crossref]

S. Brasselet and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
[Crossref]

1995 (1)

1994 (2)

C. Fiorini, F. Charra, and J. M. Nunzi, J. Opt. Soc. Am. B 11, 2347 (1994).
[Crossref]

J. M. Nunzi, F. Charra, C. Fiorini, and J. Zyss, Chem. Phys. Lett. 219, 349 (1994).
[Crossref]

1991 (1)

J. Zyss, Nonlinear Opt. 1, 3 (1991); J. Chem. Phys. 98, 6583 (1993).
[Crossref]

1988 (1)

K. D. Singer, M. G. Kusyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 19 (1988).
[Crossref]

1987 (2)

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, J. Opt. Soc. Am. B 4, 968 (1987).
[Crossref]

N. B. Baranova and B. Ya. Zel'dovich, JETP Lett. 45, 716 (1987); N. B. Baranova and B. Ya. Zel'dovich, J. Opt. Soc. Am. B 8, 27 (1991).
[Crossref]

1978 (1)

J. Jerphagnon, D. S. Chemla, and R. Bonneville, Adv. Phys. 27, 609 (1978).
[Crossref]

Baranova, N. B.

N. B. Baranova and B. Ya. Zel'dovich, JETP Lett. 45, 716 (1987); N. B. Baranova and B. Ya. Zel'dovich, J. Opt. Soc. Am. B 8, 27 (1991).
[Crossref]

Bonneville, R.

J. Jerphagnon, D. S. Chemla, and R. Bonneville, Adv. Phys. 27, 609 (1978).
[Crossref]

Brasselet, S.

S. Brasselet and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
[Crossref]

S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B, feature on organic and polymeric nonlinear optical materials (to be published).

Charra, F.

C. Fiorini, J. M. Nunzi, F. Charra, I. D. W. Samuel, and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
[Crossref]

C. Fiorini, F. Charra, J. M. Nunzi, I. D. W. Samuel, and J. Zyss, Opt. Lett. 20, 2469 (1995).
[Crossref]

C. Fiorini, F. Charra, and J. M. Nunzi, J. Opt. Soc. Am. B 11, 2347 (1994).
[Crossref]

J. M. Nunzi, F. Charra, C. Fiorini, and J. Zyss, Chem. Phys. Lett. 219, 349 (1994).
[Crossref]

Chemla, D. S.

J. Jerphagnon, D. S. Chemla, and R. Bonneville, Adv. Phys. 27, 609 (1978).
[Crossref]

Comizzoli, R. B.

K. D. Singer, M. G. Kusyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 19 (1988).
[Crossref]

Fiorini, C.

C. Fiorini, J. M. Nunzi, F. Charra, I. D. W. Samuel, and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
[Crossref]

C. Fiorini, F. Charra, J. M. Nunzi, I. D. W. Samuel, and J. Zyss, Opt. Lett. 20, 2469 (1995).
[Crossref]

J. M. Nunzi, F. Charra, C. Fiorini, and J. Zyss, Chem. Phys. Lett. 219, 349 (1994).
[Crossref]

C. Fiorini, F. Charra, and J. M. Nunzi, J. Opt. Soc. Am. B 11, 2347 (1994).
[Crossref]

Holland, W. R.

K. D. Singer, M. G. Kusyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 19 (1988).
[Crossref]

Jerphagnon, J.

J. Jerphagnon, D. S. Chemla, and R. Bonneville, Adv. Phys. 27, 609 (1978).
[Crossref]

Katz, H. E.

K. D. Singer, M. G. Kusyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 19 (1988).
[Crossref]

Kusyk, M. G.

K. D. Singer, M. G. Kusyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 19 (1988).
[Crossref]

Kuzyk, M. G.

Lalama, S. J.

K. D. Singer, M. G. Kusyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 19 (1988).
[Crossref]

Nunzi, J. M.

C. Fiorini, J. M. Nunzi, F. Charra, I. D. W. Samuel, and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
[Crossref]

C. Fiorini, F. Charra, J. M. Nunzi, I. D. W. Samuel, and J. Zyss, Opt. Lett. 20, 2469 (1995).
[Crossref]

C. Fiorini, F. Charra, and J. M. Nunzi, J. Opt. Soc. Am. B 11, 2347 (1994).
[Crossref]

J. M. Nunzi, F. Charra, C. Fiorini, and J. Zyss, Chem. Phys. Lett. 219, 349 (1994).
[Crossref]

Samuel, I. D. W.

C. Fiorini, J. M. Nunzi, F. Charra, I. D. W. Samuel, and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
[Crossref]

C. Fiorini, F. Charra, J. M. Nunzi, I. D. W. Samuel, and J. Zyss, Opt. Lett. 20, 2469 (1995).
[Crossref]

Schilling, M. L.

K. D. Singer, M. G. Kusyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 19 (1988).
[Crossref]

Singer, K. D.

K. D. Singer, M. G. Kusyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 19 (1988).
[Crossref]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, J. Opt. Soc. Am. B 4, 968 (1987).
[Crossref]

Sohn, J. E.

K. D. Singer, M. G. Kusyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 19 (1988).
[Crossref]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, J. Opt. Soc. Am. B 4, 968 (1987).
[Crossref]

Zel'dovich, B. Ya.

N. B. Baranova and B. Ya. Zel'dovich, JETP Lett. 45, 716 (1987); N. B. Baranova and B. Ya. Zel'dovich, J. Opt. Soc. Am. B 8, 27 (1991).
[Crossref]

Zyss, J.

C. Fiorini, J. M. Nunzi, F. Charra, I. D. W. Samuel, and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
[Crossref]

S. Brasselet and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
[Crossref]

C. Fiorini, F. Charra, J. M. Nunzi, I. D. W. Samuel, and J. Zyss, Opt. Lett. 20, 2469 (1995).
[Crossref]

J. M. Nunzi, F. Charra, C. Fiorini, and J. Zyss, Chem. Phys. Lett. 219, 349 (1994).
[Crossref]

J. Zyss, Nonlinear Opt. 1, 3 (1991); J. Chem. Phys. 98, 6583 (1993).
[Crossref]

S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B, feature on organic and polymeric nonlinear optical materials (to be published).

Adv. Phys. (1)

J. Jerphagnon, D. S. Chemla, and R. Bonneville, Adv. Phys. 27, 609 (1978).
[Crossref]

Appl. Phys. Lett. (1)

K. D. Singer, M. G. Kusyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, Appl. Phys. Lett. 53, 19 (1988).
[Crossref]

Chem. Phys. Lett. (1)

J. M. Nunzi, F. Charra, C. Fiorini, and J. Zyss, Chem. Phys. Lett. 219, 349 (1994).
[Crossref]

J. Nonlinear Phys. Mater. (2)

C. Fiorini, J. M. Nunzi, F. Charra, I. D. W. Samuel, and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
[Crossref]

S. Brasselet and J. Zyss, J. Nonlinear Phys. Mater. 5, 671 (1996).
[Crossref]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

N. B. Baranova and B. Ya. Zel'dovich, JETP Lett. 45, 716 (1987); N. B. Baranova and B. Ya. Zel'dovich, J. Opt. Soc. Am. B 8, 27 (1991).
[Crossref]

Nonlinear Opt. (1)

J. Zyss, Nonlinear Opt. 1, 3 (1991); J. Chem. Phys. 98, 6583 (1993).
[Crossref]

Opt. Lett. (1)

Other (2)

J. Zyss, ed., Molecular Nonlinear Optics: Materials, Physics and Devices (Academic, New York, 1994).

S. Brasselet and J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tensorial nature of nonlinear molecular media,” J. Opt. Soc. Am. B, feature on organic and polymeric nonlinear optical materials (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for a quasi-copropagative all-optical poling configuration. (a) Write step: P, Glan polarizer; F1, F2, infrared and visible bandpass filters; M1, M2, mirrors; L's, converging lenses. (b) Reading step: rotation of the half-wave plate on the fundamental beam ensures the continuous variation of its polarization. F, interferential filter to select the harmonic 532-nm wavelength; PM, photomultiplier tube.

Fig. 2
Fig. 2

Experimental (squares) and theoretical plots (solid curves) of the harmonic intensity analyzed along the Y direction for a DR1–methyl methacrylate (MMA) sample, as a function of the read polarization angle ϕ, in the case of linearly polarized writing fields with E2ω; Eω=0°, 45°, 90°.

Fig. 3
Fig. 3

Experimental and corresponding fits of the harmonic intensity I2ωϕ without an analyzer for a DR1–MMA sample, as a function of the read polarization angle ϕ, whereby the write step was performed with Eω and E2ω clockwise [(a) e.g., dipolar] and counterclockwise [(b) e.g., octupolar] circular configurations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ2=Jχ2JJ12J+1βJ2EJ,
PΩJ12J+1βJ2EJFJ,

Metrics