Abstract

We describe a high-repetition-rate femtosecond optical parametric oscillator (OPO) that was broadly tunable in the mid infrared. The all-solid-state-pumped OPO was based on quasi-phase matching in periodically poled lithium niobate. The idler was tunable from approximately 1.7 µm to beyond 5.4 µm, with maximum average power levels greater than 200  mW and more than 20  mW of average power at 5.4 µm. We used interferometric autocorrelation to characterize the mid-infrared idler pulses, which typically had durations of 125  fs. This OPO had a pumping threshold as low as 65  mW of average pump power, a maximum conversion efficiency of >35% into the near-infrared signal, a slope efficiency for the signal of approximately 60%, and a maximum pump depletion of more than 85%.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Kafka, M. L. Watts, J. W. Pieterse, and R. L. Herbst, Appl. Phys. B 60, 449 (1995); A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59211 (1994).
    [CrossRef]
  2. P. E. Powers, C. L. Tang, and L. K. Cheng, Opt. Lett. 19, 1439 (1994).
    [CrossRef] [PubMed]
  3. G. R. Holtom, R. A. Crowell, and L. K. Cheng, Opt. Lett. 20, 1880 (1995).
    [CrossRef] [PubMed]
  4. S. W. McCahon, S. A. Anson, D. J. Jang, and T. F. Boggess, Opt. Lett. 20, 2309 (1995).
    [CrossRef]
  5. D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
    [CrossRef]
  6. D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, Appl. Phys. Lett. 68, 452 (1996).
    [CrossRef]
  7. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  8. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
    [CrossRef]
  9. Throughout this Letter when we refer to “near degeneracy” this includes signal wavelengths from approximately 1.2 to 1.5  µm.
  10. All calculations were made with Sellmeier equations from G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
    [CrossRef]
  11. See, e.g., S. A. Akhmanov, A. I. Kovrygin, A. P. Sukhorukov, and R. L. Byer, both in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1B, pp. 472–586, 587–702.
  12. For a discussion of the relative merits of PPLN for use in fs devices, see M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, Opt. Lett. 22, 13 (1997).
    [CrossRef] [PubMed]
  13. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
    [CrossRef] [PubMed]
  14. G. Guelachvili and K. N. Rao, Handbook of Infrared Standards (Academic, New York, 1986).
  15. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, Opt. Lett. 17, 658 (1992).
    [CrossRef] [PubMed]
  16. S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, Opt. Lett. 22, 618 (1997).
    [CrossRef] [PubMed]

1997 (4)

1996 (2)

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
[CrossRef] [PubMed]

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

1995 (3)

J. D. Kafka, M. L. Watts, J. W. Pieterse, and R. L. Herbst, Appl. Phys. B 60, 449 (1995); A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59211 (1994).
[CrossRef]

G. R. Holtom, R. A. Crowell, and L. K. Cheng, Opt. Lett. 20, 1880 (1995).
[CrossRef] [PubMed]

S. W. McCahon, S. A. Anson, D. J. Jang, and T. F. Boggess, Opt. Lett. 20, 2309 (1995).
[CrossRef]

1994 (1)

1992 (1)

1984 (1)

All calculations were made with Sellmeier equations from G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Akhmanov, S. A.

See, e.g., S. A. Akhmanov, A. I. Kovrygin, A. P. Sukhorukov, and R. L. Byer, both in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1B, pp. 472–586, 587–702.

Anson, S. A.

Arbore, M. A.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Boggess, T. F.

Bosenberg, W. R.

Bosshard, C.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Burr, K. C.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Butterworth, S. D.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
[CrossRef] [PubMed]

See, e.g., S. A. Akhmanov, A. I. Kovrygin, A. P. Sukhorukov, and R. L. Byer, both in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1B, pp. 472–586, 587–702.

Cheng, L. K.

Crowell, R. A.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Ebrahimzadeh, M.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
[CrossRef]

Eckardt, R. C.

Edwards, G. J.

All calculations were made with Sellmeier equations from G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Fejer, M. M.

Fermann, M. E.

Galvanauskas, A.

Guelachvili, G.

G. Guelachvili and K. N. Rao, Handbook of Infrared Standards (Academic, New York, 1986).

Günter, P.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Hanna, D. C.

Hariharan, A.

Harter, D.

Herbst, R. L.

J. D. Kafka, M. L. Watts, J. W. Pieterse, and R. L. Herbst, Appl. Phys. B 60, 449 (1995); A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59211 (1994).
[CrossRef]

Holtom, G. R.

Imamura, S.

Jang, D. J.

Kafka, J. D.

J. D. Kafka, M. L. Watts, J. W. Pieterse, and R. L. Herbst, Appl. Phys. B 60, 449 (1995); A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59211 (1994).
[CrossRef]

Kobayashi, T.

Kovrygin, A. I.

See, e.g., S. A. Akhmanov, A. I. Kovrygin, A. P. Sukhorukov, and R. L. Byer, both in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1B, pp. 472–586, 587–702.

Lawrence, M.

All calculations were made with Sellmeier equations from G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

McCahon, S. W.

McGowan, C.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
[CrossRef]

Myers, L. E.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Pieterse, J. W.

J. D. Kafka, M. L. Watts, J. W. Pieterse, and R. L. Herbst, Appl. Phys. B 60, 449 (1995); A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59211 (1994).
[CrossRef]

Powers, P. E.

Rao, K. N.

G. Guelachvili and K. N. Rao, Handbook of Infrared Standards (Academic, New York, 1986).

Reid, D. T.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
[CrossRef]

Sibbett, W.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
[CrossRef]

Smith, P. G. R.

Spence, D. E.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Sukhorukov, A. P.

See, e.g., S. A. Akhmanov, A. I. Kovrygin, A. P. Sukhorukov, and R. L. Byer, both in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1B, pp. 472–586, 587–702.

Takagi, Y.

Tang, C. L.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

P. E. Powers, C. L. Tang, and L. K. Cheng, Opt. Lett. 19, 1439 (1994).
[CrossRef] [PubMed]

Watts, M. L.

J. D. Kafka, M. L. Watts, J. W. Pieterse, and R. L. Herbst, Appl. Phys. B 60, 449 (1995); A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59211 (1994).
[CrossRef]

Wielandy, S.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Yoshihara, K.

Appl. Phys. B (1)

J. D. Kafka, M. L. Watts, J. W. Pieterse, and R. L. Herbst, Appl. Phys. B 60, 449 (1995); A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59211 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
[CrossRef]

Opt. Lett. (7)

Opt. Quantum Electron. (1)

All calculations were made with Sellmeier equations from G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Other (3)

Throughout this Letter when we refer to “near degeneracy” this includes signal wavelengths from approximately 1.2 to 1.5  µm.

See, e.g., S. A. Akhmanov, A. I. Kovrygin, A. P. Sukhorukov, and R. L. Byer, both in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1B, pp. 472–586, 587–702.

G. Guelachvili and K. N. Rao, Handbook of Infrared Standards (Academic, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Calculated tuning curves for the signal (solid) and the idler (dashed) with a QPM grating period of 19.0  µm and an internal angle of 1.14° between pump and signal for (a) pump tuning at a temperature of 150 °C and (b) temperature tuning at a pump wavelength of 795  nm. (c) Typical signal autocorrelation and (d) corresponding spectrum.

Fig. 2
Fig. 2

(a) Idler spectrum (solid curve) and background transmission in air (dashed curve). (b) Typical interferometric autocorrelation of the idler when the wavelength was 5 µm.

Metrics