Abstract

An atomic streak camera has been constructed that operates from the near to the far infrared. The photocathode used in conventional streak cameras for the conversion of photons to electrons has been replaced by gas-phase atoms in a Rydberg state. The low binding energy of the electron in a Rydberg atom combined with the large photoionization cross section of a Rydberg atom makes Rydberg atoms suitable for use in an infrared streak camera. Operation of the streak camera is demonstrated at 2.6 µm, well beyond the spectral range of any conventional streak camera.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Tsuchiya, IEEE J. Quant. Electron. QE-20, 1516 (1984).
    [CrossRef]
  2. Y. Tsuchiya, H. Suzuki, M. Koishi, K. Kinishita, and T. Nakamura, Proc. SPIE 569, 181 (1985).
    [CrossRef]
  3. G. M. Lankhuijzen and L. D. Noordam, Opt. Commun. 129, 361 (1996).
    [CrossRef]
  4. G. M. Lankhiujzen and L. D. Noordam, Nucl. Instrum. Methods Phys. Res. A 375, 651 (1996).
    [CrossRef]
  5. G. Mourou and W. Knox, Appl. Phys. Lett. 35, 492 (1979).
    [CrossRef]
  6. W. Knox and G. Mourou, Opt. Commun. 37, 203 (1981).
    [CrossRef]
  7. M. J. P. Brugmans, H. J. Bakker, and A. Lagendijk, J. Chem. Phys. 104, 64 (1996).
    [CrossRef]
  8. G. M. Lankhuijzen and L. D. Noordam, Phys. Rev. Lett. 76, 1784 (1996).
    [CrossRef] [PubMed]
  9. T. F. Gallagher, Rydberg Atoms (Cambridge U. Press, Cambridge, 1994).
    [CrossRef]
  10. M. Aymar, E. Luc-Koenig, and F. Combet Farnoux, J. Phys. B 9, 1279 (1976).
    [CrossRef]

1996 (4)

G. M. Lankhuijzen and L. D. Noordam, Opt. Commun. 129, 361 (1996).
[CrossRef]

G. M. Lankhiujzen and L. D. Noordam, Nucl. Instrum. Methods Phys. Res. A 375, 651 (1996).
[CrossRef]

M. J. P. Brugmans, H. J. Bakker, and A. Lagendijk, J. Chem. Phys. 104, 64 (1996).
[CrossRef]

G. M. Lankhuijzen and L. D. Noordam, Phys. Rev. Lett. 76, 1784 (1996).
[CrossRef] [PubMed]

1985 (1)

Y. Tsuchiya, H. Suzuki, M. Koishi, K. Kinishita, and T. Nakamura, Proc. SPIE 569, 181 (1985).
[CrossRef]

1984 (1)

Y. Tsuchiya, IEEE J. Quant. Electron. QE-20, 1516 (1984).
[CrossRef]

1981 (1)

W. Knox and G. Mourou, Opt. Commun. 37, 203 (1981).
[CrossRef]

1979 (1)

G. Mourou and W. Knox, Appl. Phys. Lett. 35, 492 (1979).
[CrossRef]

1976 (1)

M. Aymar, E. Luc-Koenig, and F. Combet Farnoux, J. Phys. B 9, 1279 (1976).
[CrossRef]

Aymar, M.

M. Aymar, E. Luc-Koenig, and F. Combet Farnoux, J. Phys. B 9, 1279 (1976).
[CrossRef]

Bakker, H. J.

M. J. P. Brugmans, H. J. Bakker, and A. Lagendijk, J. Chem. Phys. 104, 64 (1996).
[CrossRef]

Brugmans, M. J. P.

M. J. P. Brugmans, H. J. Bakker, and A. Lagendijk, J. Chem. Phys. 104, 64 (1996).
[CrossRef]

Combet Farnoux, F.

M. Aymar, E. Luc-Koenig, and F. Combet Farnoux, J. Phys. B 9, 1279 (1976).
[CrossRef]

Gallagher, T. F.

T. F. Gallagher, Rydberg Atoms (Cambridge U. Press, Cambridge, 1994).
[CrossRef]

Kinishita, K.

Y. Tsuchiya, H. Suzuki, M. Koishi, K. Kinishita, and T. Nakamura, Proc. SPIE 569, 181 (1985).
[CrossRef]

Knox, W.

W. Knox and G. Mourou, Opt. Commun. 37, 203 (1981).
[CrossRef]

G. Mourou and W. Knox, Appl. Phys. Lett. 35, 492 (1979).
[CrossRef]

Koishi, M.

Y. Tsuchiya, H. Suzuki, M. Koishi, K. Kinishita, and T. Nakamura, Proc. SPIE 569, 181 (1985).
[CrossRef]

Lagendijk, A.

M. J. P. Brugmans, H. J. Bakker, and A. Lagendijk, J. Chem. Phys. 104, 64 (1996).
[CrossRef]

Lankhiujzen, G. M.

G. M. Lankhiujzen and L. D. Noordam, Nucl. Instrum. Methods Phys. Res. A 375, 651 (1996).
[CrossRef]

Lankhuijzen, G. M.

G. M. Lankhuijzen and L. D. Noordam, Phys. Rev. Lett. 76, 1784 (1996).
[CrossRef] [PubMed]

G. M. Lankhuijzen and L. D. Noordam, Opt. Commun. 129, 361 (1996).
[CrossRef]

Luc-Koenig, E.

M. Aymar, E. Luc-Koenig, and F. Combet Farnoux, J. Phys. B 9, 1279 (1976).
[CrossRef]

Mourou, G.

W. Knox and G. Mourou, Opt. Commun. 37, 203 (1981).
[CrossRef]

G. Mourou and W. Knox, Appl. Phys. Lett. 35, 492 (1979).
[CrossRef]

Nakamura, T.

Y. Tsuchiya, H. Suzuki, M. Koishi, K. Kinishita, and T. Nakamura, Proc. SPIE 569, 181 (1985).
[CrossRef]

Noordam, L. D.

G. M. Lankhuijzen and L. D. Noordam, Opt. Commun. 129, 361 (1996).
[CrossRef]

G. M. Lankhuijzen and L. D. Noordam, Phys. Rev. Lett. 76, 1784 (1996).
[CrossRef] [PubMed]

G. M. Lankhiujzen and L. D. Noordam, Nucl. Instrum. Methods Phys. Res. A 375, 651 (1996).
[CrossRef]

Suzuki, H.

Y. Tsuchiya, H. Suzuki, M. Koishi, K. Kinishita, and T. Nakamura, Proc. SPIE 569, 181 (1985).
[CrossRef]

Tsuchiya, Y.

Y. Tsuchiya, H. Suzuki, M. Koishi, K. Kinishita, and T. Nakamura, Proc. SPIE 569, 181 (1985).
[CrossRef]

Y. Tsuchiya, IEEE J. Quant. Electron. QE-20, 1516 (1984).
[CrossRef]

Appl. Phys. Lett. (1)

G. Mourou and W. Knox, Appl. Phys. Lett. 35, 492 (1979).
[CrossRef]

IEEE J. Quant. Electron. (1)

Y. Tsuchiya, IEEE J. Quant. Electron. QE-20, 1516 (1984).
[CrossRef]

J. Chem. Phys. (1)

M. J. P. Brugmans, H. J. Bakker, and A. Lagendijk, J. Chem. Phys. 104, 64 (1996).
[CrossRef]

J. Phys. B (1)

M. Aymar, E. Luc-Koenig, and F. Combet Farnoux, J. Phys. B 9, 1279 (1976).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

G. M. Lankhiujzen and L. D. Noordam, Nucl. Instrum. Methods Phys. Res. A 375, 651 (1996).
[CrossRef]

Opt. Commun. (2)

G. M. Lankhuijzen and L. D. Noordam, Opt. Commun. 129, 361 (1996).
[CrossRef]

W. Knox and G. Mourou, Opt. Commun. 37, 203 (1981).
[CrossRef]

Phys. Rev. Lett. (1)

G. M. Lankhuijzen and L. D. Noordam, Phys. Rev. Lett. 76, 1784 (1996).
[CrossRef] [PubMed]

Proc. SPIE (1)

Y. Tsuchiya, H. Suzuki, M. Koishi, K. Kinishita, and T. Nakamura, Proc. SPIE 569, 181 (1985).
[CrossRef]

Other (1)

T. F. Gallagher, Rydberg Atoms (Cambridge U. Press, Cambridge, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic overview of the IR atomic streak camera. Potassium atoms excited to a Rydberg state by a tunable UV laser are photoionized by an IR laser pulse. The generated electrons are accelerated, and their trajectories are bent by the ramped voltage across the deflection plates, thereby converting time into position. The electrons finally impinge upon a positive-sensitive detector consisting of a multichannel plate assembly with a phosphor screen and a CCD camera.

Fig. 2
Fig. 2

Top, single-shot image at a wavelength of 2.6 µm as recorded with the CCD camera; center, temporal profile derived from the single-shot image; bottom, temporal profile obtained after averaging over 200  shots.

Metrics