Abstract

A pulse train with a repetition rate of 115  GHz was obtained at 1.55  µm from a continuous-wave modulational-instability erbium-doped fiber laser. This laser has a Fabry–Perot filter whose free spectral range is set at 115  GHz, corresponding to the modulational-instability gain peak. This filter enables us to initiate modulational instability easily with a low threshold and produce a stable, continuous-wave pulse train. The stability of the pulse train is greatly improved by suppression of supermode noise with a combination of self-phase modulation and a narrow-band optical filter.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Pfeiffer and G. Veith, Electron. Lett. 29, 1849 (1993).
    [CrossRef]
  2. M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
    [CrossRef]
  3. E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1370 (1996).
    [CrossRef]
  4. M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
    [CrossRef]
  5. M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, IEEE J. Quantum Electron. QE-25, 2045 (1989).
    [CrossRef]
  6. M. Nakazawa and H. Kubota, in Extended Abstracts of the 50th Annual Autumn Meeting of the Japan Society of Applied Physics (Japan Society of Applied Physics, Fukuoka, Japan, 1989), p. 864.
  7. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, Opt. Lett. 20, 2009 (1995).
    [CrossRef] [PubMed]
  8. M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
    [CrossRef]

1996 (2)

E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1370 (1996).
[CrossRef]

M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

1995 (1)

1994 (1)

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

1993 (1)

Th. Pfeiffer and G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

1989 (2)

M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, IEEE J. Quantum Electron. QE-25, 2045 (1989).
[CrossRef]

Cristiani, I.

Fontana, F.

Franco, P.

Haus, H. A.

M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, IEEE J. Quantum Electron. QE-25, 2045 (1989).
[CrossRef]

Kimura, Y.

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

Kubota, H.

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, IEEE J. Quantum Electron. QE-25, 2045 (1989).
[CrossRef]

M. Nakazawa and H. Kubota, in Extended Abstracts of the 50th Annual Autumn Meeting of the Japan Society of Applied Physics (Japan Society of Applied Physics, Fukuoka, Japan, 1989), p. 864.

Midrio, M.

Nakazawa, M.

M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1370 (1996).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, IEEE J. Quantum Electron. QE-25, 2045 (1989).
[CrossRef]

M. Nakazawa and H. Kubota, in Extended Abstracts of the 50th Annual Autumn Meeting of the Japan Society of Applied Physics (Japan Society of Applied Physics, Fukuoka, Japan, 1989), p. 864.

Pfeiffer, Th.

Th. Pfeiffer and G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

Romagnoli, M.

Suzuki, K.

M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, IEEE J. Quantum Electron. QE-25, 2045 (1989).
[CrossRef]

Tamura, K.

M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

Veith, G.

Th. Pfeiffer and G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

Yoshida, E.

E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1370 (1996).
[CrossRef]

M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

Electron. Lett. (4)

Th. Pfeiffer and G. Veith, Electron. Lett. 29, 1849 (1993).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, Electron. Lett. 30, 1603 (1994).
[CrossRef]

E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1370 (1996).
[CrossRef]

M. Nakazawa, K. Tamura, and E. Yoshida, Electron. Lett. 32, 461 (1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Nakazawa, K. Suzuki, and H. A. Haus, IEEE J. Quantum Electron. 25, 2036 (1989).
[CrossRef]

M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, IEEE J. Quantum Electron. QE-25, 2045 (1989).
[CrossRef]

Opt. Lett. (1)

Other (1)

M. Nakazawa and H. Kubota, in Extended Abstracts of the 50th Annual Autumn Meeting of the Japan Society of Applied Physics (Japan Society of Applied Physics, Fukuoka, Japan, 1989), p. 864.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for a MI erbium-doped fiber laser with a Fabry–Perot filter: LD’s laser diodes; WDM’s, wavelength-division multiplexers; PM-DSF, polarization-maintaining dispersion-shifted fiber; P.C., polarization controller.

Fig. 2
Fig. 2

Output pulse trains: Autocorrelation waveforms are shown for pump powers of (a) 50  mW, (b) 100  mW, and (c) 130  mW. Also shown are spectral profiles for pump powers of (d) 50  mW, (e) 100  mW, and (f) 130  mW. The dashed cure in (f) is a fitting curve when a sech profile is assumed.

Fig. 3
Fig. 3

Dependence of η on pump power for different fiber lengths. η is the ratio of the cw component to the peak pulse intensity in the autocorrelation waveform. The GVD of the fiber is 1.2 (ps/km)/nm. , 0.5  km; , 1.0  m; , 1.5  km; ▽, 2.0  km, , pulse width when the fiber length is 1.5  km.

Fig. 4
Fig. 4

Dependence of η and pulse width on GVD. The pump power is 130  mW. , η; , pulse width.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

νMI2=2n2cP/λ3DA,

Metrics