Abstract

The interaction between a guided mode of a single-mode optical fiber and a surface plasmon wave supported by a thin metal overlayer is studied. A theoretical description is given of this phenomenon based on the mode expansion and propagation method. It is demonstrated that the interaction can take place only within a narrow wavelength range therefore is manifested by a dip in the spectrum of the transmitted optical power. One can control the wavelength position of the dip by varying the refractive index of the superstate. Experimental study of the realized structure, consisting of a single-mode optical fiber with locally removed cladding and a thin gold overlayer, shows that the 2×10-3 change in the refractive index of the superstrate shifts the dip by 10 nm.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Johnstone, G. Stewart, B. Culshaw, and T. Hart, Electron. Lett. 24, 866 (1988).
    [CrossRef]
  2. M. N. Zervas and I. P. Giles, Opt. Lett. 15, 513 (1990).
    [CrossRef] [PubMed]
  3. R. Willsch, Electron. Lett. 26, 1113 (1990).
    [CrossRef]
  4. P. Kurzynowski, J. Mod. Opt. 40, 1547 (1993).
    [CrossRef]
  5. J. Homola and R. Slavík, Electron. Lett. 32, 480 (1996).
    [CrossRef]
  6. J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. 33, 5186 (1986).
    [CrossRef]
  7. G. Sztefka and H. P. Nolting, IEEE Photon. Technol. Lett. 5, 554 (1993).
    [CrossRef]
  8. J. Čtyroký, J. Homola, and M. Skalský, Opt. Quantum Electron. 29, 301 (1997).
    [CrossRef]
  9. E. D. Palik, ed., Handbook of Optical Constants of Solids, 1st ed. (Academic, Orlando, Fla., 1985), Chap. 2, p. 286.
  10. M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. 18, 746 (1982).
    [CrossRef]
  11. M. J. F. Digonnet, J. R. Feth, L. R. Stokes, and H. J. Shaw, Opt. Lett. 10, 463 (1985).
    [CrossRef] [PubMed]

1997 (1)

J. Čtyroký, J. Homola, and M. Skalský, Opt. Quantum Electron. 29, 301 (1997).
[CrossRef]

1996 (1)

J. Homola and R. Slavík, Electron. Lett. 32, 480 (1996).
[CrossRef]

1993 (2)

P. Kurzynowski, J. Mod. Opt. 40, 1547 (1993).
[CrossRef]

G. Sztefka and H. P. Nolting, IEEE Photon. Technol. Lett. 5, 554 (1993).
[CrossRef]

1990 (2)

1988 (1)

W. Johnstone, G. Stewart, B. Culshaw, and T. Hart, Electron. Lett. 24, 866 (1988).
[CrossRef]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. 33, 5186 (1986).
[CrossRef]

1985 (1)

1982 (1)

M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. 18, 746 (1982).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. 33, 5186 (1986).
[CrossRef]

Ctyroký, J.

J. Čtyroký, J. Homola, and M. Skalský, Opt. Quantum Electron. 29, 301 (1997).
[CrossRef]

Culshaw, B.

W. Johnstone, G. Stewart, B. Culshaw, and T. Hart, Electron. Lett. 24, 866 (1988).
[CrossRef]

Digonnet, M. J. F.

Feth, J. R.

Giles, I. P.

Hart, T.

W. Johnstone, G. Stewart, B. Culshaw, and T. Hart, Electron. Lett. 24, 866 (1988).
[CrossRef]

Homola, J.

J. Čtyroký, J. Homola, and M. Skalský, Opt. Quantum Electron. 29, 301 (1997).
[CrossRef]

J. Homola and R. Slavík, Electron. Lett. 32, 480 (1996).
[CrossRef]

Johnstone, W.

W. Johnstone, G. Stewart, B. Culshaw, and T. Hart, Electron. Lett. 24, 866 (1988).
[CrossRef]

Kurzynowski, P.

P. Kurzynowski, J. Mod. Opt. 40, 1547 (1993).
[CrossRef]

Nolting, H. P.

G. Sztefka and H. P. Nolting, IEEE Photon. Technol. Lett. 5, 554 (1993).
[CrossRef]

Shaw, H. J.

Skalský, M.

J. Čtyroký, J. Homola, and M. Skalský, Opt. Quantum Electron. 29, 301 (1997).
[CrossRef]

Slavík, R.

J. Homola and R. Slavík, Electron. Lett. 32, 480 (1996).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. 33, 5186 (1986).
[CrossRef]

Stewart, G.

W. Johnstone, G. Stewart, B. Culshaw, and T. Hart, Electron. Lett. 24, 866 (1988).
[CrossRef]

Stokes, L. R.

Sztefka, G.

G. Sztefka and H. P. Nolting, IEEE Photon. Technol. Lett. 5, 554 (1993).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. 33, 5186 (1986).
[CrossRef]

Willsch, R.

R. Willsch, Electron. Lett. 26, 1113 (1990).
[CrossRef]

Zervas, M. N.

Electron. Lett. (3)

R. Willsch, Electron. Lett. 26, 1113 (1990).
[CrossRef]

J. Homola and R. Slavík, Electron. Lett. 32, 480 (1996).
[CrossRef]

W. Johnstone, G. Stewart, B. Culshaw, and T. Hart, Electron. Lett. 24, 866 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. 18, 746 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Sztefka and H. P. Nolting, IEEE Photon. Technol. Lett. 5, 554 (1993).
[CrossRef]

J. Mod. Opt. (1)

P. Kurzynowski, J. Mod. Opt. 40, 1547 (1993).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

J. Čtyroký, J. Homola, and M. Skalský, Opt. Quantum Electron. 29, 301 (1997).
[CrossRef]

Phys. Rev. (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. 33, 5186 (1986).
[CrossRef]

Other (1)

E. D. Palik, ed., Handbook of Optical Constants of Solids, 1st ed. (Academic, Orlando, Fla., 1985), Chap. 2, p. 286.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of a fiber optic structure supporting a SPW.

Fig. 2
Fig. 2

Calculated relative output power carried by the TM0 mode of the equivalent planar waveguide against the wavelength for different refractive indices of the superstrate.

Fig. 3
Fig. 3

Calculated relative output power carried by the TM0 mode of the equivalent planar waveguide against the refractive index of the superstrate for selected wavelengths.

Fig. 4
Fig. 4

Measured relative output power as a function of the wavelength for different refractive indices of the superstrate.

Fig. 5
Fig. 5

Measured relative output power as a function of the refractive index of the superstrate for selected wavelengths.

Metrics