Abstract

A counterpropagating quasi-phase-matched configuration is examined that is capable of efficiently producing second-order cascaded nonlinear phase shifts with minimal power lost to the second harmonic. For all-optical switching in a nonlinear Mach–Zehnder interferometer, the calculated minimum input power needed for switching (i.e., to yield a ±π/2 phase shift) is 40 times smaller than the power needed in the standard type  I copropagating configuration. The throughput of this counterpropagating device is 96% at the optimum switching point.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, Opt. Lett. 19, 1305 (1994).
    [CrossRef] [PubMed]
  2. G. Assanto, Opt. Lett. 20, 1595 (1995).
    [CrossRef] [PubMed]
  3. G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, Appl. Phys. Lett. 62, 1323 (1993).
    [CrossRef]
  4. Y. Baek, R. Schiek, and G. I. Stegeman, Opt. Lett. 20, 2168 (1995).
    [CrossRef]
  5. A. Laureti-Palma, S. Trillo, and G. Assanto, in Proceedings of ECIO’95—7th European Conference on Integrated Optics, L. Shi, L. H. Spiekman, and X. J. M. Leijtens, eds. (Delft U. Press, Delft, The Netherlands, 1995), Vol. 1, p. 355.
  6. Y. J. Ding and J. B. Khurgin, Opt. Lett. 21, 1445 (1996).
    [CrossRef] [PubMed]
  7. J. Khurgin, J. Opt. Soc. Am. B 6, 1673 (1989).
    [CrossRef]
  8. S. Janz, F. Chatenoud, and R. Normandin, Opt. Lett. 19, 622 (1994).
    [CrossRef] [PubMed]
  9. W. P. Risk, S. D. Lau, and M. A. McCord, IEEE Photon. Technol. Lett. 6, 406 (1994).
    [CrossRef]
  10. D. Zwillinger, Handbook of Differential Equations, 2nd ed. (Academic, San Diego, Calif., 1992).
  11. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997).
    [CrossRef]

1996 (1)

1995 (2)

1994 (3)

1993 (1)

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, Appl. Phys. Lett. 62, 1323 (1993).
[CrossRef]

1989 (1)

Assanto, G.

G. Assanto, Opt. Lett. 20, 1595 (1995).
[CrossRef] [PubMed]

D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, Opt. Lett. 19, 1305 (1994).
[CrossRef] [PubMed]

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, Appl. Phys. Lett. 62, 1323 (1993).
[CrossRef]

A. Laureti-Palma, S. Trillo, and G. Assanto, in Proceedings of ECIO’95—7th European Conference on Integrated Optics, L. Shi, L. H. Spiekman, and X. J. M. Leijtens, eds. (Delft U. Press, Delft, The Netherlands, 1995), Vol. 1, p. 355.

Baek, Y.

Chatenoud, F.

Ding, Y. J.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997).
[CrossRef]

Hagan, D. J.

Janz, S.

Khurgin, J.

Khurgin, J. B.

Lau, S. D.

W. P. Risk, S. D. Lau, and M. A. McCord, IEEE Photon. Technol. Lett. 6, 406 (1994).
[CrossRef]

Laureti-Palma, A.

A. Laureti-Palma, S. Trillo, and G. Assanto, in Proceedings of ECIO’95—7th European Conference on Integrated Optics, L. Shi, L. H. Spiekman, and X. J. M. Leijtens, eds. (Delft U. Press, Delft, The Netherlands, 1995), Vol. 1, p. 355.

McCord, M. A.

W. P. Risk, S. D. Lau, and M. A. McCord, IEEE Photon. Technol. Lett. 6, 406 (1994).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997).
[CrossRef]

Normandin, R.

Risk, W. P.

W. P. Risk, S. D. Lau, and M. A. McCord, IEEE Photon. Technol. Lett. 6, 406 (1994).
[CrossRef]

Schiek, R.

Sheik-Bahae, M.

D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, Opt. Lett. 19, 1305 (1994).
[CrossRef] [PubMed]

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, Appl. Phys. Lett. 62, 1323 (1993).
[CrossRef]

Stegeman, G.

D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, Opt. Lett. 19, 1305 (1994).
[CrossRef] [PubMed]

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, Appl. Phys. Lett. 62, 1323 (1993).
[CrossRef]

Stegeman, G. I.

Trillo, S.

A. Laureti-Palma, S. Trillo, and G. Assanto, in Proceedings of ECIO’95—7th European Conference on Integrated Optics, L. Shi, L. H. Spiekman, and X. J. M. Leijtens, eds. (Delft U. Press, Delft, The Netherlands, 1995), Vol. 1, p. 355.

Van Stryland, E.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, Appl. Phys. Lett. 62, 1323 (1993).
[CrossRef]

Van Stryland, E. W.

Wang, Z.

Zwillinger, D.

D. Zwillinger, Handbook of Differential Equations, 2nd ed. (Academic, San Diego, Calif., 1992).

Appl. Phys. Lett. (1)

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. Van Stryland, Appl. Phys. Lett. 62, 1323 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. P. Risk, S. D. Lau, and M. A. McCord, IEEE Photon. Technol. Lett. 6, 406 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Other (3)

A. Laureti-Palma, S. Trillo, and G. Assanto, in Proceedings of ECIO’95—7th European Conference on Integrated Optics, L. Shi, L. H. Spiekman, and X. J. M. Leijtens, eds. (Delft U. Press, Delft, The Netherlands, 1995), Vol. 1, p. 355.

D. Zwillinger, Handbook of Differential Equations, 2nd ed. (Academic, San Diego, Calif., 1992).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Conversion efficiency as a function of normalized input power κL=1. The counterpropagating configuration (solid curve) with mirror reflectivities Rω=R2ω=0.99 is compared with a standard QPM device of length L (long-dashed curve) and a standard QPM device of length 2L (short-dashed curve). The counterpropagating maximum occurs near π/42. Inset: the configuration under consideration with a QPM period Λ and a mirror located at z=1. The z axis is normalized to device length L.

Fig. 2
Fig. 2

Effects of phase mismatch in the device under consideration as a function of normalized input power with κL=1 and Rω=R2ω=0.99. (a) Nonlinear phase shift in units of π. (b) Fundamental throughput power B02.

Fig. 3
Fig. 3

Normalized input power (solid curve) necessary for a π/2 fundamental phase shift and the associated fundamental power throughput (dotted curve) in a standard copropagating design for κL=1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ddzAz=-jκLB*zCz+Dz,
ddzBz=+jκLA*zCz+Dz,
ddzCz=-j2κLAzBz-jΔkLCz,
ddzDz=+j2κLAzBz+jΔkLDz,
κ=4dλ0nω2η0PNn2ω1/2,
A02=21+R2ω1κL2×ξ21-tan2arctanRω-ξ,
η=P2ωPω=D02A02=1+R2ω2×1-tan2arctanRω-ξ.

Metrics