Abstract

A new technique for energy-preserving phase-only light projection is demonstrated. The phase-only encoding is based on an extension of the Zernike phase-contrast method into the domain of full-range [0; 2π] phase modulation, breaking the usual small-phase-angle limitation. Controlling the spatial average value of the input-phase pattern and choosing appropriate phase retardation at the phase-contrast filter yield pure-phase-based image formation. Experimental results demonstrate close to 90% energy efficiency. Output intensity levels with magnitudes more than 3.5  times that of the input intensity level were measured in the brightest regions of the projected images.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See the special issue on computer optics, Opt. Lasers Eng. 15, 293–371 (1991).
    [CrossRef]
  2. B. Löfving, Appl. Opt. 36, 2347 (1997).
    [CrossRef]
  3. C. F. Ageshin, A. A. Azarov, V. V. Popov, and I. N. Sisakyan, Comput. Opt. 2, 81 (1990).
  4. J. Glückstad, Opt. Commun. 130, 225 (1996).
    [CrossRef]
  5. J. Glückstad, “Phase-contrast imaging,” patentWO 96/34307 (October31, 1996).
  6. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, Appl. Opt. 33, 2804 (1994).
    [CrossRef] [PubMed]
  7. J. Glückstad, Opt. Commun. 120, 194 (1995).
    [CrossRef]

1997 (1)

1996 (1)

J. Glückstad, Opt. Commun. 130, 225 (1996).
[CrossRef]

1995 (1)

J. Glückstad, Opt. Commun. 120, 194 (1995).
[CrossRef]

1994 (1)

1991 (1)

See the special issue on computer optics, Opt. Lasers Eng. 15, 293–371 (1991).
[CrossRef]

1990 (1)

C. F. Ageshin, A. A. Azarov, V. V. Popov, and I. N. Sisakyan, Comput. Opt. 2, 81 (1990).

Ageshin, C. F.

C. F. Ageshin, A. A. Azarov, V. V. Popov, and I. N. Sisakyan, Comput. Opt. 2, 81 (1990).

Azarov, A. A.

C. F. Ageshin, A. A. Azarov, V. V. Popov, and I. N. Sisakyan, Comput. Opt. 2, 81 (1990).

Glückstad, J.

J. Glückstad, Opt. Commun. 130, 225 (1996).
[CrossRef]

J. Glückstad, Opt. Commun. 120, 194 (1995).
[CrossRef]

J. Glückstad, “Phase-contrast imaging,” patentWO 96/34307 (October31, 1996).

Hara, T.

Kobayashi, Y.

Löfving, B.

Mukohzaka, N.

Popov, V. V.

C. F. Ageshin, A. A. Azarov, V. V. Popov, and I. N. Sisakyan, Comput. Opt. 2, 81 (1990).

Sisakyan, I. N.

C. F. Ageshin, A. A. Azarov, V. V. Popov, and I. N. Sisakyan, Comput. Opt. 2, 81 (1990).

Toyoda, H.

Yoshida, N.

Appl. Opt. (2)

Comput. Opt. (1)

C. F. Ageshin, A. A. Azarov, V. V. Popov, and I. N. Sisakyan, Comput. Opt. 2, 81 (1990).

Opt. Commun. (2)

J. Glückstad, Opt. Commun. 130, 225 (1996).
[CrossRef]

J. Glückstad, Opt. Commun. 120, 194 (1995).
[CrossRef]

Opt. Lasers Eng. (1)

See the special issue on computer optics, Opt. Lasers Eng. 15, 293–371 (1991).
[CrossRef]

Other (1)

J. Glückstad, “Phase-contrast imaging,” patentWO 96/34307 (October31, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the optical setup.

Fig. 2
Fig. 2

Optical setup used for experimental verification: F. T., Fourier transforming; Coll., collimating.

Fig. 3
Fig. 3

Detected images obtained from a binary-encoded 0 / π -phase PAL-SLM input pattern: (a) simple imaging without applying phase-contrast filter, (b) imaging obtained when the π -phase-contrast filter is situated in the Fourier plane. Note that the bright regions in (b) are more than 3.5  times brighter than the corresponding regions in (a).

Fig. 4
Fig. 4

60- µ m -diameter phase contrast filter: (a) reflection microscope image, (b) line profile through the filter edge obtained by atomic-force microscopy, (c) Mach–Zehnder interferometric measurement of the ITO-coating–glass transition.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I x ,   y 1 + 4 α ¯ sin θ 2 α ¯ sin θ 2 - sin ϕ α ¯ - ϕ x ,   y + θ 2 ,
α ¯ = 1 2 sin θ / 2 .
I x ,   y = 2 1 - cos ϕ x ,   y ,
1 Δ x Δ y Δ x Δ y   cos ϕ x ,   y d x d y = 1 2 ,   Δ x Δ y   sin ϕ x ,   y d x d y = 0 .

Metrics