Abstract

We demonstrate the use of an aperiodic quasi-phase-matching (QPM) grating to generate second-harmonic pulses that are stretched or compressed relative to input pulses at the fundamental frequency. We frequency doubled an externally chirped erbium-doped fiber laser generating 17-ps (FWHM) pulses at 1560  nm to produce near-transform-limited 110-fs (FWHM) pulses at 780  nm by use of a 5-cm-long lithium niobate crystal poled with a QPM grating chirped from an 18.2- to a 19.8-µm period.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Dieles and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York, 1996).
  2. O. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
    [CrossRef]
  3. S. A. Akhamanov, in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, part B, pp. 476–586.
  4. M. A. Arbore, O. Marco, and M. M. Fejer, Opt. Lett. 22, 865 (1997).
    [CrossRef] [PubMed]
  5. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  6. V. Pruneri, S. D. Butterworth, and D. C. Hanna, Opt. Lett. 21, 390 (1996).
    [CrossRef] [PubMed]
  7. M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, Opt. Lett. 22, 13 (1997).
    [CrossRef] [PubMed]
  8. T. Suhara and H. Nishihara, IEEE J. Quantum. Electron. 26, 1265 (1990).
    [CrossRef]
  9. M. L. Bortz, M. Fujimura, and M. M. Fejer, Electron. Lett. 30, 34 (1994).
    [CrossRef]
  10. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
    [CrossRef]
  11. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]

1997 (2)

1996 (1)

1995 (1)

1994 (2)

M. L. Bortz, M. Fujimura, and M. M. Fejer, Electron. Lett. 30, 34 (1994).
[CrossRef]

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1990 (1)

T. Suhara and H. Nishihara, IEEE J. Quantum. Electron. 26, 1265 (1990).
[CrossRef]

1987 (1)

O. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

Akhamanov, S. A.

S. A. Akhamanov, in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, part B, pp. 476–586.

Arbore, M. A.

Bortz, M. L.

M. L. Bortz, M. Fujimura, and M. M. Fejer, Electron. Lett. 30, 34 (1994).
[CrossRef]

Bosenberg, W. R.

Butterworth, S. D.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Dieles, G. C.

G. C. Dieles and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York, 1996).

Eckardt, R. C.

Fejer, M. M.

Fermann, M. E.

Fujimura, M.

M. L. Bortz, M. Fujimura, and M. M. Fejer, Electron. Lett. 30, 34 (1994).
[CrossRef]

Galvanauskas, A.

Hanna, D. C.

Hariharan, A.

Harter, D.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kato, M.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Marco, O.

Martinez, O. E.

O. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

Myers, L. E.

Nishihara, H.

T. Suhara and H. Nishihara, IEEE J. Quantum. Electron. 26, 1265 (1990).
[CrossRef]

Pierce, J. W.

Pruneri, V.

Rudolph, W.

G. C. Dieles and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York, 1996).

Sato, H.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

Suhara, T.

T. Suhara and H. Nishihara, IEEE J. Quantum. Electron. 26, 1265 (1990).
[CrossRef]

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

Electron. Lett. (1)

M. L. Bortz, M. Fujimura, and M. M. Fejer, Electron. Lett. 30, 34 (1994).
[CrossRef]

IEEE J. Quantum Electron. (3)

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

O. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

IEEE J. Quantum. Electron. (1)

T. Suhara and H. Nishihara, IEEE J. Quantum. Electron. 26, 1265 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Other (2)

G. C. Dieles and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, New York, 1996).

S. A. Akhamanov, in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, part B, pp. 476–586.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SH autocorrelation trace at maximum compression, indicating 110-fs (FWHM) duration. The input fundamental pulses (inset autocorrelation) that gave rise to this SH output had durations of 17  ps (FWHM).

Fig. 2
Fig. 2

Input (open circles) and output (filled circles) autocorrelation widths plotted against the chirp of the input pulse (expressed in terms of delay line GVD) for SHG in a chirped QPM grating with Dg20.28 mm-2. The curves are theoretical predictions based on square spectra with 75-nm width at 1560  nm (near open circles) and 16-nm width at 780  nm (near closed circles). The inset shows the output-pulse autocorrelations near maximum compression.

Fig. 3
Fig. 3

Efficiency plotted against delay line dispersion. The curve is a plot of theoretical efficiency approximated by that for pulses with a 25-nm (FWHM) Gaussian fundamental spectrum (18-nm SH spectrum), normalized to the peak experimental value.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Aˆ2Ω=DˆΩA12ˆΩ.
Dg2=12ddzklocalz,
Dp=-δ2/Dg2Dp, opt.

Metrics