Abstract

We performed detailed experimental and numerical investigations of the conical emission (CE) accompanying the filamentation of powerful ultrashort laser pulses in air. It was found that the CE originates from self-phase modulation in the plasma produced by the pulse during propagation. The experiment and the simulation agree on the essential features of the CE: The CE angle decreases with increasing wavelength and is independent of the position along the filament, and there is no CE at Stokes-shifted wavelengths.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, Opt. Lett. 20, 73 (1995).
    [CrossRef] [PubMed]
  2. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, Opt. Lett. 21, 62 (1996).
    [CrossRef] [PubMed]
  3. A. Brodeur, O. G. Kosareva, C.-Y. Chien, F. A. Ilkov, V. P. Kandidov, and S. L. Chin, Opt. Lett. 22, 304 (1997).
    [CrossRef] [PubMed]
  4. J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).
    [CrossRef]
  5. I. Golub, Opt. Lett. 15, 305 (1990).
    [CrossRef]
  6. Q. Xing, K. M. Yoo, and R. R. Alfano, Appl. Opt. 32, 2087 (1993).
    [CrossRef] [PubMed]
  7. A. Szöke, in Atomic and Molecular Processes with Short Intense Laser Pulses, A. D. Bandrauk, ed. (Plenum, New York, 1987), p. 207.
  8. N. Bloembergen, Opt. Commun. 8, 285 (1973).
    [CrossRef]
  9. A. Talebpour, C.-Y. Chien, and S. L. Chin, J. Phys. B 29, L677 (1996).
    [CrossRef]
  10. G. G. Luther, A. C. Newell, J. V. Moloney, and E. M. Wright, Opt. Lett. 19, 789 (1994).
    [CrossRef] [PubMed]

1997 (1)

1996 (2)

1995 (1)

1994 (1)

1993 (1)

1990 (1)

1975 (1)

J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).
[CrossRef]

1973 (1)

N. Bloembergen, Opt. Commun. 8, 285 (1973).
[CrossRef]

Alfano, R. R.

Bloembergen, N.

N. Bloembergen, Opt. Commun. 8, 285 (1973).
[CrossRef]

Braun, A.

Brodeur, A.

Chien, C.-Y.

Chin, S. L.

Curley, P. F.

Du, D.

Franco, M. A.

Golub, I.

Grillon, G.

Ilkov, F. A.

Kandidov, V. P.

Korn, G.

Kosareva, O. G.

Liu, X.

Luther, G. G.

Marburger, J. H.

J. H. Marburger, Prog. Quantum Electron. 4, 35 (1975).
[CrossRef]

Moloney, J. V.

Mourou, G.

Mysyrowicz, A.

Newell, A. C.

Nibbering, E. T. J.

Prade, B. S.

Salin, F.

Squier, J.

Szöke, A.

A. Szöke, in Atomic and Molecular Processes with Short Intense Laser Pulses, A. D. Bandrauk, ed. (Plenum, New York, 1987), p. 207.

Talebpour, A.

A. Talebpour, C.-Y. Chien, and S. L. Chin, J. Phys. B 29, L677 (1996).
[CrossRef]

Wright, E. M.

Xing, Q.

Yoo, K. M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: The CE emitted between the aperture and the razor blade is measured on the screen.

Fig. 2
Fig. 2

Measured (symbols) and calculated (curves) CE angles. Triangles, z40 m; circles, z50 m; squares, z60 m. In the simulations the corresponding positions are 0.42zd (curve  1), 0.52zd (curve  2), and 0.62zd (curve  3). The right y  axis gives the absolute values of the measured CE angles in degrees. Curve  4 shows the simulated CE angles obtained after the phase correction.

Fig. 3
Fig. 3

(a), (c), (e) intensity Ir, τ and (b), (d), (f) spatiotemporal spectrum logEk, ω2/Emaxk, ω2, where Emaxk, ω2 is the maximum spectral intensity. (a), (b) z=0; (c), (d) z=0.34zd; (e), (f) z=0.42zd.

Fig. 4
Fig. 4

Wave fronts near z=0.42zd for three wavelengths λ, where z=z-0.42zd. The curves are equal-phase points relative to r=0, z=0.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2ikz+1vgtE=ΔE+2k2n0ΔnE-ikαE, Δn=12n2E2-2πe2Nemω2n0.

Metrics