Abstract

Laser-induced modification of cavity Q’s has been achieved in a microdroplet containing a saturable absorber. The elastic-scattering spectra from such droplets for higher incident intensities show that cavity Q’s are increased when the absorption is bleached. The lasing spectra from a droplet containing a saturable absorber and laser dye are modified when an intense bleaching field is injected into the droplet cavity after the pump field has initiated the lasing.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
    [CrossRef]
  2. R. Thurn and W. Kiefer, Appl. Spectrosc. 38, 78 (1984).
    [CrossRef]
  3. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, Phys. Rev. Lett. 76, 3931 (1996).
    [CrossRef] [PubMed]
  4. H. M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, Opt. Lett. 9, 499 (1984).
    [CrossRef] [PubMed]
  5. H.-B. Lin, A. L. Hutson, B. L. Justus, and A. J. Campillo, Opt. Lett. 11, 614 (1986).
    [CrossRef] [PubMed]
  6. P. Chylek, H.-B. Lin, J. D. Eversole, and A. J. Campillo, Opt. Lett. 16, 1723 (1991).
    [CrossRef]
  7. J. Popp, M. H. Fields, and R. K. Chang, Opt. Lett. 22, 139 (1997).
    [CrossRef] [PubMed]
  8. C. L. O’Bryan and M. Sargent, Phys. Rev. A 8, 3071 (1973).
    [CrossRef]
  9. M. L. Spaeth and W. R. Sooy, J. Chem. Phys. 48, 2315 (1968).
    [CrossRef]

1997 (1)

1996 (1)

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, Phys. Rev. Lett. 76, 3931 (1996).
[CrossRef] [PubMed]

1991 (1)

1986 (1)

1984 (2)

1977 (1)

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

1973 (1)

C. L. O’Bryan and M. Sargent, Phys. Rev. A 8, 3071 (1973).
[CrossRef]

1968 (1)

M. L. Spaeth and W. R. Sooy, J. Chem. Phys. 48, 2315 (1968).
[CrossRef]

Arnold, S.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, Phys. Rev. Lett. 76, 3931 (1996).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Barnes, M. D.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, Phys. Rev. Lett. 76, 3931 (1996).
[CrossRef] [PubMed]

Campillo, A. J.

Chang, R. K.

Chylek, P.

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

Eversole, J. D.

Fields, M. H.

Holler, S.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, Phys. Rev. Lett. 76, 3931 (1996).
[CrossRef] [PubMed]

Hutson, A. L.

Justus, B. L.

Kiefer, W.

Kung, C.-Y.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, Phys. Rev. Lett. 76, 3931 (1996).
[CrossRef] [PubMed]

Lin, H.-B.

Long, M. B.

O’Bryan, C. L.

C. L. O’Bryan and M. Sargent, Phys. Rev. A 8, 3071 (1973).
[CrossRef]

Popp, J.

Ramsey, J. M.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, Phys. Rev. Lett. 76, 3931 (1996).
[CrossRef] [PubMed]

Sargent, M.

C. L. O’Bryan and M. Sargent, Phys. Rev. A 8, 3071 (1973).
[CrossRef]

Sooy, W. R.

M. L. Spaeth and W. R. Sooy, J. Chem. Phys. 48, 2315 (1968).
[CrossRef]

Spaeth, M. L.

M. L. Spaeth and W. R. Sooy, J. Chem. Phys. 48, 2315 (1968).
[CrossRef]

Thurn, R.

Tzeng, H. M.

Wall, K. F.

Whitten, W. B.

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, Phys. Rev. Lett. 76, 3931 (1996).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

J. Chem. Phys. (1)

M. L. Spaeth and W. R. Sooy, J. Chem. Phys. 48, 2315 (1968).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

C. L. O’Bryan and M. Sargent, Phys. Rev. A 8, 3071 (1973).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351 (1977).
[CrossRef]

M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, Phys. Rev. Lett. 76, 3931 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Elastic-scattering spectra of 23.7-µm-radius methanol droplets containing 2×10-4 M DQTCI measured at three different incident intensities I and calculated with five different values for the imaginary part of refractive index ni. The MDR’s are assigned to TEn10 (n=247–250), TEn11 (n=242–246), and TEn12 (n=238–242) modes.

Fig. 2
Fig. 2

Lasing spectra from 23-µm droplets: (a) Pump-only and bleached lasing spectra from methanol droplets containing DCM only. (b) Similar spectra from methanol droplets containing DCM and DQTCI. The bleaching-laser wavelength is tuned to one probed MDR and is indicated by an . All the spectra have the same intensity scale except for the thin curve in (b), which is the bleached lasing spectrum divided by 20.

Fig. 3
Fig. 3

Schematic of the gain (left-hand column) and laser output (right-hand column) as a function of time for the laser dye with saturable absorber system. (a) The gain is clamped for a set of MDR’s before the bleaching pulse arrives. (b) The gain exceeds the loss as soon as the bleaching pulse bleaches the saturable absorber. (c) The combined internal intensity of the bleaching and lasing fields makes the probed MDR experience the most gain and clamps that gain to the threshold value. (d) The other MDR’s are now below threshold.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1Qtotal=1Qleak+1Qabs.
dIidt=ai-j=1NθijIjIi,

Metrics