Abstract

We demonstrate single-frequency operation of a cw quasi-phase-matched singly resonant optical parametric oscillator (SRO). We obtained widely tunable output from 1.66 to 1.99  µm (signal) and from 2.29 to 2.96  µm (idler) by employing a periodically poled lithium niobate multigrating chip. Using a single-frequency miniature Nd:YAG ring laser as a pump source results in SRO output with high spectral purity and frequency stability (<10 MHz/min), which can be continuously tuned over 2  GHz without mode hops. We obtain a minimum SRO threshold of 260  mW by resonating the pump wave in the SRO cavity.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993); J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, Electron. Lett. 30, 894 (1994); W. K. Burns, W. McElhanon, and L. Goldberg, IEEE Photon. Technol. Lett. 6, 252 (1994).
    [CrossRef]
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  3. S. T. Yang, R. C. Eckardt, and R. L. Byer, J. Opt. Soc. Am. B 10, 1684 (1993).
    [CrossRef]
  4. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, Opt. Lett. 21, 713 (1996).
    [CrossRef] [PubMed]
  5. D. Chen, D. Hinkley, J. Pyo, J. Swenson, and R. Fields, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 241.
  6. G. Robertson, M. J. Padgett, and M. H. Dunn, Opt. Lett. 21, 1735 (1994).
    [CrossRef]
  7. S. Guha, F. J. Wu, and J. Falk, J. Quantum Electron. QE-18, 907 (1982). We have generalized the results to the case of arbitrary location of the waist in the crystal.
    [CrossRef]
  8. M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087 (1995).
    [CrossRef]
  9. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Opt. Lett. 21, 591 (1996).
    [CrossRef] [PubMed]
  10. The efficiency of a pump resonant SRO can be derived in a fashion similar to that of the case of a doubly resonant OPO.
  11. G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
    [CrossRef]

1996 (2)

1995 (2)

1994 (1)

1993 (2)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993); J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, Electron. Lett. 30, 894 (1994); W. K. Burns, W. McElhanon, and L. Goldberg, IEEE Photon. Technol. Lett. 6, 252 (1994).
[CrossRef]

S. T. Yang, R. C. Eckardt, and R. L. Byer, J. Opt. Soc. Am. B 10, 1684 (1993).
[CrossRef]

1984 (1)

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

1982 (1)

S. Guha, F. J. Wu, and J. Falk, J. Quantum Electron. QE-18, 907 (1982). We have generalized the results to the case of arbitrary location of the waist in the crystal.
[CrossRef]

Alexander, J. I.

Beier, B.

Boller, K.-J.

Bosenberg, W. R.

Byer, R. L.

Chen, D.

D. Chen, D. Hinkley, J. Pyo, J. Swenson, and R. Fields, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 241.

Drobshoff, A.

Dunn, M. H.

Eckardt, R. C.

Edwards, G. J.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Falk, J.

S. Guha, F. J. Wu, and J. Falk, J. Quantum Electron. QE-18, 907 (1982). We have generalized the results to the case of arbitrary location of the waist in the crystal.
[CrossRef]

Fejer, M. M.

Fields, R.

D. Chen, D. Hinkley, J. Pyo, J. Swenson, and R. Fields, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 241.

Guha, S.

S. Guha, F. J. Wu, and J. Falk, J. Quantum Electron. QE-18, 907 (1982). We have generalized the results to the case of arbitrary location of the waist in the crystal.
[CrossRef]

Hinkley, D.

D. Chen, D. Hinkley, J. Pyo, J. Swenson, and R. Fields, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 241.

Knappe, R.

Lawrence, M.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Myers, L. E.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993); J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, Electron. Lett. 30, 894 (1994); W. K. Burns, W. McElhanon, and L. Goldberg, IEEE Photon. Technol. Lett. 6, 252 (1994).
[CrossRef]

Padgett, M. J.

Pierce, J. W.

Pyo, J.

D. Chen, D. Hinkley, J. Pyo, J. Swenson, and R. Fields, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 241.

Robertson, G.

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993); J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, Electron. Lett. 30, 894 (1994); W. K. Burns, W. McElhanon, and L. Goldberg, IEEE Photon. Technol. Lett. 6, 252 (1994).
[CrossRef]

Scheidt, M.

Swenson, J.

D. Chen, D. Hinkley, J. Pyo, J. Swenson, and R. Fields, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 241.

Wallenstein, R.

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993); J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, Electron. Lett. 30, 894 (1994); W. K. Burns, W. McElhanon, and L. Goldberg, IEEE Photon. Technol. Lett. 6, 252 (1994).
[CrossRef]

Wu, F. J.

S. Guha, F. J. Wu, and J. Falk, J. Quantum Electron. QE-18, 907 (1982). We have generalized the results to the case of arbitrary location of the waist in the crystal.
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993); J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, Electron. Lett. 30, 894 (1994); W. K. Burns, W. McElhanon, and L. Goldberg, IEEE Photon. Technol. Lett. 6, 252 (1994).
[CrossRef]

Yang, S. T.

Appl. Phys. Lett. (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993); J. Webjörn, V. Pruneri, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, Electron. Lett. 30, 894 (1994); W. K. Burns, W. McElhanon, and L. Goldberg, IEEE Photon. Technol. Lett. 6, 252 (1994).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Quantum Electron. (1)

S. Guha, F. J. Wu, and J. Falk, J. Quantum Electron. QE-18, 907 (1982). We have generalized the results to the case of arbitrary location of the waist in the crystal.
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Other (2)

D. Chen, D. Hinkley, J. Pyo, J. Swenson, and R. Fields, in Advanced Solid-State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 241.

The efficiency of a pump resonant SRO can be derived in a fashion similar to that of the case of a doubly resonant OPO.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup: The PPLN crystal is located in a temperature-stabilized oven (not shown). The pump and the signal waves are resonant, and the idler wave is strongly coupled out. p, pump; s, signal; i, idler; FPI, Fabry–Perot interferometer; FI, Faraday isolator; PD’s, photodetectors; BS, beam splitter; HR, high-reflecting mirror; DM, dichroic mirror.

Fig. 2
Fig. 2

Single-frequency operation of the SRO, observed with a confocal FPI.

Fig. 3
Fig. 3

Tuning of the signal and the idler as a function of crystal temperature. Each set of data corresponds to one grating of the PPLN chip. The theoretical curves are calculated from published Sellmeier equations.11

Fig. 4
Fig. 4

Idler output power as a function of mode-matched input pump power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δνsνs=neTνs-neTνpΔT+neνp+dLcΔνpνpneνs+dLc.
Pouti/Pinp=νiνp4TpTp+Ap(PthextPinp-PthextPinp),

Metrics