Abstract

Highly coherent mid-infrared femtosecond pulses, tunable between 2.5 and 4.4  µm, and with an average energy and duration between 2.6 and 3.6  µm of 11  µJ and 200  fs, respectively, have been produced by an optical parametric amplifier setup driven at 1  kHz by a 400-µJ, 800-nm pulse from a Ti:sapphire amplifier. In this system, first tunable moderate-energy femtosecond pulses in the near infrared are produced by continuum amplification in β-barium borate, and subsequently the near-infrared pulses are amplified and frequency mixed with 800-nm radiation in potassium titanyl phosphate to produce intense tunable mid-infrared pulses. The time–bandwidth product of the mid-infrared pulses is 0.28±0.02 over the whole high-energy tuning range. Experimental results are compared with numerical simulations and a simple model.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Holtom, R. A. Crowell, and X. S. Xie, J. Opt. Soc. Am. B 12, 1723 (1995).
    [CrossRef]
  2. F. Seifert, V. Petrov, and M. Woerner, Opt. Lett. 19, 2009 (1994).
    [CrossRef] [PubMed]
  3. V. Petrov and F. Noack, J. Opt. Soc. Am. B 12, 2214 (1995).
    [CrossRef]
  4. V. Petrov, F. Noack, and R. Stolzenberger, Appl. Opt. 36, 1164 (1997).
    [CrossRef] [PubMed]
  5. V. Petrov and F. Noack, Opt. Lett. 21, 1576 (1996).
    [CrossRef] [PubMed]
  6. J. D. Kafka and M. L. Watts, Ultrafast Phenomena X, Vol.  62 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1996), p. 38.
    [CrossRef]
  7. G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Commun. 119, 159 (1995).
    [CrossRef]
  8. P. de Trapani, A. Adreoni, C. Solcia, P. Foggi, R. Danielius, A. Dubietis, and A. Piskarskas, J. Opt. Soc. Am. B 12, 2237 (1995).
    [CrossRef]

1997 (1)

1996 (1)

1995 (4)

1994 (1)

Adreoni, A.

Cavallari, M.

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Commun. 119, 159 (1995).
[CrossRef]

Crowell, R. A.

Danielius, R.

de Trapani, P.

Driscoll, T. J.

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Commun. 119, 159 (1995).
[CrossRef]

Dubietis, A.

Foggi, P.

Gale, G. M.

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Commun. 119, 159 (1995).
[CrossRef]

Hache, F.

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Commun. 119, 159 (1995).
[CrossRef]

Holtom, G. R.

Kafka, J. D.

J. D. Kafka and M. L. Watts, Ultrafast Phenomena X, Vol.  62 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1996), p. 38.
[CrossRef]

Noack, F.

Petrov, V.

Piskarskas, A.

Seifert, F.

Solcia, C.

Stolzenberger, R.

Watts, M. L.

J. D. Kafka and M. L. Watts, Ultrafast Phenomena X, Vol.  62 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1996), p. 38.
[CrossRef]

Woerner, M.

Xie, X. S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Mid-IR femtosecond-pulse generator: BS's, beam splitters; VA, variable attenuator; L1–L5, lenses; QC, quasi-continuum generation; RF, high-pass rejection filter; D's, optical delay lines; DM's, dichroic mirrors; λ/2, half-wave plate; SHG, second-harmonic generation. Arrowed arcs, vertical axis rotation stages.

Fig. 2
Fig. 2

Energy of the mid-IR pulses as a function of wavelength (filled squares). The solid curve is a guide to the eye.

Fig. 3
Fig. 3

(a) Measured mid-IR pulse duration (filled circles) as a function of wavelength. The solid curve, NSλ, is obtained from numerical simulation of the KTP amplifier–mixer. The upper dotted curve is given by 2.3 GDWSIλ and the lower dotted curve by 1.25 GDWSIλ (see text). (b) Mid-IR pulse bandwidth (open circles) as a function of wavelength. The solid curve is given by 0.28 /cNSλ, where c is the speed of light. The inset shows the spectrum of the pulse at 3  µm. The scale is in wave numbers. Each division of the wave-number scale represents 50 cm-1. The solid curve is a fit with a sech1.2 function. (c) Time–bandwidth product (filled squares) of the mid-IR pulses as a function of wavelength. The solid line is the average value in the 2.6–3.6-nm range of the time–bandwidth product, which equals 0.28.

Metrics