Abstract

We report observation of the photorefractive effect in functionalized polymer-dispersed liquid crystals. The photoconductive properties are provided by the polymer matrix, and the field-dependent refractive-index changes are generated by the dispersed nematic liquid-crystal droplets. A high diffraction efficiency (8%) and a high refractive-index modulation amplitude Δn=2×10-3 are obtained in 53-µm-thick samples with an applied field of 22  V/µm.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988, 1989), Vols. 1 and 2.
    [CrossRef]
  2. B. Kippelen, K. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, Boca Raton, Fla., 1997), pp. 465–513; W. E. Moerner and S. M. Silence, Chem. Rev. 94, 127 (1994).
    [CrossRef]
  3. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, Nature (London) 383, 58 (1996).
    [CrossRef]
  4. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, J. Opt. Soc. Am. B 11, 320 (1994).
    [CrossRef]
  5. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature (London) 371, 497 (1994).
    [CrossRef]
  6. E. V. Rudenko and A. V. Sukhov, JETP Lett. 59, 142 (1994).
  7. I. C. Khoo, H. Li, and Y. Liang, Opt. Lett. 19, 1723 (1994).
    [CrossRef] [PubMed]
  8. G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, Science 270, 1794 (1995).
    [CrossRef]
  9. W. Helfrich, J. Chem. Phys. 51, 4092 (1969).
    [CrossRef]
  10. I. C. Khoo, IEEE J. Quantum Electron. 32, 525 (1996).
    [CrossRef]
  11. P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).
    [CrossRef]
  12. P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, Science 274, 1182 (1996).
    [CrossRef] [PubMed]

1996 (3)

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, Nature (London) 383, 58 (1996).
[CrossRef]

I. C. Khoo, IEEE J. Quantum Electron. 32, 525 (1996).
[CrossRef]

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, Science 274, 1182 (1996).
[CrossRef] [PubMed]

1995 (1)

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, Science 270, 1794 (1995).
[CrossRef]

1994 (4)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature (London) 371, 497 (1994).
[CrossRef]

E. V. Rudenko and A. V. Sukhov, JETP Lett. 59, 142 (1994).

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, J. Opt. Soc. Am. B 11, 320 (1994).
[CrossRef]

I. C. Khoo, H. Li, and Y. Liang, Opt. Lett. 19, 1723 (1994).
[CrossRef] [PubMed]

1969 (1)

W. Helfrich, J. Chem. Phys. 51, 4092 (1969).
[CrossRef]

Bjorklund, G. C.

Burland, D. M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, Science 274, 1182 (1996).
[CrossRef] [PubMed]

Drzaic, P. S.

P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).
[CrossRef]

Geletneky, C.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, Science 274, 1182 (1996).
[CrossRef] [PubMed]

Günter, P.

P. Günter and J.-P Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988, 1989), Vols. 1 and 2.
[CrossRef]

Hache, F.

Helfrich, W.

W. Helfrich, J. Chem. Phys. 51, 4092 (1969).
[CrossRef]

Huignard, J.-P

P. Günter and J.-P Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988, 1989), Vols. 1 and 2.
[CrossRef]

Javidi, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, Nature (London) 383, 58 (1996).
[CrossRef]

Jurich, M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, Science 274, 1182 (1996).
[CrossRef] [PubMed]

Khoo, I. C.

Kippelen, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, Nature (London) 383, 58 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature (London) 371, 497 (1994).
[CrossRef]

B. Kippelen, K. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, Boca Raton, Fla., 1997), pp. 465–513; W. E. Moerner and S. M. Silence, Chem. Rev. 94, 127 (1994).
[CrossRef]

Lee, V. Y.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, Science 274, 1182 (1996).
[CrossRef] [PubMed]

Li, H.

Liang, Y.

Lundquist, P. M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, Science 274, 1182 (1996).
[CrossRef] [PubMed]

Meerholz, K.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, Nature (London) 383, 58 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature (London) 371, 497 (1994).
[CrossRef]

B. Kippelen, K. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, Boca Raton, Fla., 1997), pp. 465–513; W. E. Moerner and S. M. Silence, Chem. Rev. 94, 127 (1994).
[CrossRef]

Moerner, W. E.

Moylan, C. R.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, Science 274, 1182 (1996).
[CrossRef] [PubMed]

Peyghambarian, N.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, Nature (London) 383, 58 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature (London) 371, 497 (1994).
[CrossRef]

B. Kippelen, K. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, Boca Raton, Fla., 1997), pp. 465–513; W. E. Moerner and S. M. Silence, Chem. Rev. 94, 127 (1994).
[CrossRef]

Rudenko, E. V.

E. V. Rudenko and A. V. Sukhov, JETP Lett. 59, 142 (1994).

Sandalphon,

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature (London) 371, 497 (1994).
[CrossRef]

Silence, S. M.

Sukhov, A. V.

E. V. Rudenko and A. V. Sukhov, JETP Lett. 59, 142 (1994).

Twieg, R. J.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, Science 274, 1182 (1996).
[CrossRef] [PubMed]

Volodin, B. L.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, Nature (London) 383, 58 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature (London) 371, 497 (1994).
[CrossRef]

Wasielewski, M. R.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, Science 270, 1794 (1995).
[CrossRef]

Wiederrecht, G. P.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, Science 270, 1794 (1995).
[CrossRef]

Wortmann, R.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, Science 274, 1182 (1996).
[CrossRef] [PubMed]

Yoon, B. A.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, Science 270, 1794 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. C. Khoo, IEEE J. Quantum Electron. 32, 525 (1996).
[CrossRef]

J. Chem. Phys. (1)

W. Helfrich, J. Chem. Phys. 51, 4092 (1969).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

E. V. Rudenko and A. V. Sukhov, JETP Lett. 59, 142 (1994).

Nature (London) (2)

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, Nature (London) 383, 58 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, Nature (London) 371, 497 (1994).
[CrossRef]

Opt. Lett. (1)

Science (2)

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, Science 270, 1794 (1995).
[CrossRef]

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, Science 274, 1182 (1996).
[CrossRef] [PubMed]

Other (3)

P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).
[CrossRef]

P. Günter and J.-P Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988, 1989), Vols. 1 and 2.
[CrossRef]

B. Kippelen, K. Meerholz, and N. Peyghambarian, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC, Boca Raton, Fla., 1997), pp. 465–513; W. E. Moerner and S. M. Silence, Chem. Rev. 94, 127 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic and design principle of photorefractive polymer-dispersed liquid crystals.

Fig. 2
Fig. 2

Linear absorption spectrum of homogeneous PMMA:ECZ:TNF:E49 without droplets. The arrow indicates the wavelengths of the writing beams. Inset: geometry used for the wave-mixing experiments; two writing beams with total power of 1  mW from a He–Ne laser (633  nm) were p polarized and had a spot size on the sample of 250 µm. The grating was tested by diffraction of a probe beam with 10 µW of power and a 50-µm spot size from a 675-nm laser diode. The tilt angle was set to Ψ=60°, and the angle 2θ between the beams was 13.5°, leading to a grating spacing of 4.5 µm. The average refractive index of the material was 1.53. K, grating vector; V, applied voltage; αi, incidence angles of the writing beams.

Fig. 3
Fig. 3

Diffracted signal intensity for several experimental conditions: at t=0 a 1.2-kV voltage is applied to the sample and one of the writing beams is blocked; at t1 the second writing beam is restored and a grating is written in the sample; at t2 the same writing beam is blocked again and the grating is erased by the remaining uniform beams; at t3 the writing beam is restored and a new grating is written; at t4 the applied voltage is switched off and restored at t5; at t6 all the beams are blocked; at t7 only the probe beam is restored and diffracted on the grating that was stored in the material between times t6 and t7.

Fig. 4
Fig. 4

Field dependence of the external diffraction efficiency. Inset: field dependence of the transmitted probe beam.

Metrics