Abstract

Achromatic phase matching (APM) involves dispersing the light entering a nonlinear-optical crystal so that a wide range of wavelengths is simultaneously phase matched. Using an APM arrangement consisting of a grism (a grating on the surface of a prism) and three prisms, optimized to match a second-harmonic crystal phase-matching angle versus wavelength to high order, we efficiently doubled tunable fundamental light near 650  nm with a bandwidth of >95 nm by use of a 4-mm type  I β-barium borate crystal. APM uses no moving parts, and unlike previous APM designs, ours avoids lenses and hence is easy to align and insensitive to translational misalignment of the beam.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
    [CrossRef]
  2. O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
    [CrossRef]
  3. G. Szabo and Z. Bor, Appl. Phys. B 50, 51 (1990).
    [CrossRef]
  4. R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
    [CrossRef]
  5. S. Saikan, D. Ouw, and F. P. Schäfer, Appl. Opt. 18, 193 (1979).
    [CrossRef] [PubMed]
  6. V. D. Volosov and E. V. Goryachkina, Sov. J. Quantum Electron. 6, 854 (1976).
    [CrossRef]
  7. S. Kane and J. Squire, J. Opt. Soc. Am. B 14, 661 (1997); P. Tournois, Electron. Lett. 29, 1414 (1993).
    [CrossRef]
  8. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, and B. W. Shore, Opt. Lett. 20, 940 (1995).
    [CrossRef] [PubMed]

1997 (1)

1995 (1)

1990 (2)

G. Szabo and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

1989 (1)

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

1979 (1)

1976 (1)

V. D. Volosov and E. V. Goryachkina, Sov. J. Quantum Electron. 6, 854 (1976).
[CrossRef]

Bor, Z.

G. Szabo and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

Boyd, R. D.

Britten, J. A.

Decker, D.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
[CrossRef]

Goryachkina, E. V.

V. D. Volosov and E. V. Goryachkina, Sov. J. Quantum Electron. 6, 854 (1976).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
[CrossRef]

Kane, S.

Martinez, O. E.

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
[CrossRef]

Ouw, D.

Perry, M. D.

Saikan, S.

Schäfer, F. P.

Shore, B. W.

Short, R. W.

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

Skupsky, S.

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

Squire, J.

Szabo, G.

G. Szabo and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

Volosov, V. D.

V. D. Volosov and E. V. Goryachkina, Sov. J. Quantum Electron. 6, 854 (1976).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

G. Szabo and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

V. D. Volosov and E. V. Goryachkina, Sov. J. Quantum Electron. 6, 854 (1976).
[CrossRef]

Other (1)

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Type  I phase-matching angles of β-barium borate (BBO; solid curve), KDP (dashed curve), and lithium triborate (LBO; dotted curve). BBO has the smallest tuning rate, and hence requires the least dispersion. Type  II tuning rates are much larger.

Fig. 2
Fig. 2

Schematic of the APM system. The first two prisms serve to disperse the different wavelengths laterally, and the dispersion of the remaining elements causes them to converge in the SHG crystal. The grism provides most of the necessary dispersion at the crystal. The Littrow prism magnifies the angular dispersion up to that point by 1.8 and fine tunes higher orders of the dispersion. The 4-mm-long BBO crystal is cut for type  I SHG at 650-nm fundamental wavelength.

Fig. 3
Fig. 3

Contour plot of the experimentally measured SH relative pulse energy versus fundamental wavelength and absolute crystal angle. The solid curve is the theoretically predicted angle mismatch between the APM dispersion and perfect crystal phase matching. This curve should follow the experimental maxima, and it does. The point spacing is 5 nm×100 µrad.

Fig. 4
Fig. 4

Relative phase-matching efficiency versus wavelength (the slice of Fig.  3 corresponding to zero angle). The experimental points indicate a bandwidth (50% of optimum) of at least 95  nm. The solid curve is the theoretically predicted relative SH conversion efficiency calculated from the predicted angle mismatch. Shown for comparison is the theoretical (dashed) curve for a single grating that matches the linear phase-matching angle tuning rate and operates at the Bragg condition.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ0λ=-b sec θ0, 2θ0λ2=+θ0λ2 tan θ0.

Metrics