Abstract

We describe electric-field poling of fine-pitch ferroelectric domain gratings in lithium tantalate and characterization of nonlinear-optical properties by single-pass quasi-phase-matched second-harmonic generation (QPM SHG). With a 7.5-µm-period grating, the observed effective nonlinear coefficient for first-order QPM SHG of 532-nm radiation is 9  pm/V, whereas for a grating with a 2.625-µm period, 2.6  pm/V was observed for second-order QPM SHG of 325-nm radiation. These values are 100% and 55% of the theoretically expected values, respectively. We derive a temperature-dependent Sellmeier equation for lithium tantalate that is valid deeper into the UV than currently available results, based on temperature-tuning experiments at different QPM grating periods combined with refractive-index data in the literature.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  3. K. Mizuuchi, K. Yamamoto, and M. Kato, Appl. Phys. Lett. 70, 1201 (1997).
    [CrossRef]
  4. L. E. Myers, R. C. Eckhard, M. M. Fejer, and R. L. Byer, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  5. LiTaO3 wafers were manufactured by Shin-Etsu Kagaku Kougyou, 2-6-1 Ohtemachi Chiyodaku 100, Japan, and Yamaju Ceramics, 971 Anada-cho Setoshi, 489 Japan.
  6. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  7. V. Pruneri, S. D. Butterworth, and D. C. Hanna, Opt. Lett. 21, 390 (1996).
    [CrossRef] [PubMed]
  8. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of the second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B (to be published).
  9. M. L. Bortz, S. J. Fields, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, IEEE J. Quantum Electron. 30, 2953 (1994).
    [CrossRef]
  10. K. S. Abedin and H. Ito, J. Appl. Phys. 80, 6561 (1996).
    [CrossRef]
  11. W. L. Bond, J. Appl. Phys. 36, 1674 (1965).
    [CrossRef]
  12. Y. S. Kim and R. T. Smith, J. Appl. Phys. 40, 4637 (1969).
    [CrossRef]
  13. S. Matsumoto, Electron. Lett. 27, 2040 (1991).
    [CrossRef]
  14. G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
    [CrossRef]
  15. Profit 5.0 (Quantum-Soft, Zürich, Switzerland, 1996).

1997 (1)

K. Mizuuchi, K. Yamamoto, and M. Kato, Appl. Phys. Lett. 70, 1201 (1997).
[CrossRef]

1996 (2)

1995 (1)

1994 (1)

M. L. Bortz, S. J. Fields, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, IEEE J. Quantum Electron. 30, 2953 (1994).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1991 (1)

S. Matsumoto, Electron. Lett. 27, 2040 (1991).
[CrossRef]

1984 (1)

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

1969 (1)

Y. S. Kim and R. T. Smith, J. Appl. Phys. 40, 4637 (1969).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

1965 (1)

W. L. Bond, J. Appl. Phys. 36, 1674 (1965).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Abedin, K. S.

K. S. Abedin and H. Ito, J. Appl. Phys. 80, 6561 (1996).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bond, W. L.

W. L. Bond, J. Appl. Phys. 36, 1674 (1965).
[CrossRef]

Bortz, M. L.

M. L. Bortz, S. J. Fields, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, IEEE J. Quantum Electron. 30, 2953 (1994).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Butterworth, S. D.

Byer, R. L.

L. E. Myers, R. C. Eckhard, M. M. Fejer, and R. L. Byer, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Duncan, J.

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Eckhard, R. C.

Edwards, G. J.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Fejer, M. M.

L. E. Myers, R. C. Eckhard, M. M. Fejer, and R. L. Byer, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

M. L. Bortz, S. J. Fields, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, IEEE J. Quantum Electron. 30, 2953 (1994).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Fields, S. J.

M. L. Bortz, S. J. Fields, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, IEEE J. Quantum Electron. 30, 2953 (1994).
[CrossRef]

Hanna, D. C.

Ito, H.

K. S. Abedin and H. Ito, J. Appl. Phys. 80, 6561 (1996).
[CrossRef]

Ito, R.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of the second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B (to be published).

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kato, M.

K. Mizuuchi, K. Yamamoto, and M. Kato, Appl. Phys. Lett. 70, 1201 (1997).
[CrossRef]

Kim, Y. S.

Y. S. Kim and R. T. Smith, J. Appl. Phys. 40, 4637 (1969).
[CrossRef]

Kitamoto, A.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of the second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B (to be published).

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kondo, T.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of the second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B (to be published).

Lawrence, M.

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Matsumoto, S.

S. Matsumoto, Electron. Lett. 27, 2040 (1991).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, and M. Kato, Appl. Phys. Lett. 70, 1201 (1997).
[CrossRef]

Myers, L. E.

Nam, D. W.

M. L. Bortz, S. J. Fields, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, IEEE J. Quantum Electron. 30, 2953 (1994).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Pruneri, V.

Shirane, M.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of the second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B (to be published).

Shoji, I.

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of the second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B (to be published).

Smith, R. T.

Y. S. Kim and R. T. Smith, J. Appl. Phys. 40, 4637 (1969).
[CrossRef]

Waarts, R. G.

M. L. Bortz, S. J. Fields, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, IEEE J. Quantum Electron. 30, 2953 (1994).
[CrossRef]

Welch, D. F.

M. L. Bortz, S. J. Fields, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, IEEE J. Quantum Electron. 30, 2953 (1994).
[CrossRef]

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, and M. Kato, Appl. Phys. Lett. 70, 1201 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

K. Mizuuchi, K. Yamamoto, and M. Kato, Appl. Phys. Lett. 70, 1201 (1997).
[CrossRef]

Electron. Lett. (1)

S. Matsumoto, Electron. Lett. 27, 2040 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. L. Bortz, S. J. Fields, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, IEEE J. Quantum Electron. 30, 2953 (1994).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

J. Appl. Phys. (4)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

K. S. Abedin and H. Ito, J. Appl. Phys. 80, 6561 (1996).
[CrossRef]

W. L. Bond, J. Appl. Phys. 36, 1674 (1965).
[CrossRef]

Y. S. Kim and R. T. Smith, J. Appl. Phys. 40, 4637 (1969).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Other (3)

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of the second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B (to be published).

Profit 5.0 (Quantum-Soft, Zürich, Switzerland, 1996).

LiTaO3 wafers were manufactured by Shin-Etsu Kagaku Kougyou, 2-6-1 Ohtemachi Chiyodaku 100, Japan, and Yamaju Ceramics, 971 Anada-cho Setoshi, 489 Japan.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

c+ face (left) and c- face (right) of periodically poled LiTaO3, with a grating period Λ=2.625 µm.

Fig. 2
Fig. 2

Phase-matching temperatures for QPM SHG as a function of second-harmonic wavelength for 12 different periods, shown in micrometers in the legend. Higher-order QPM periods are quoted as equivalent first-order periods for clarity of presentation.

Tables (1)

Tables Icon

Table 1 Efficiency and Nonlinear Coefficients of Selected Periodically Poled LiTaO3 Crystals

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

deff=PoutPin2λω3nωn2ω0c16π2l1h1/2,
Λ=λω2n2ω-nω.
ΛT=Λ20C°1.6×10-5T-20 C°+7×10-9T-20 C°2.
ne2λ, T=A+aT+B+bTλ2-C+cT2+Dλ2.
ne2λ, T=A+B+bTλ2-C+cT2+Eλ2-F2+Dλ2,

Metrics