Abstract

Efficient frequency tripling of high-fluence, narrow-band laser pulses is routinely accomplished with a doubling crystal and a sum-frequency mixer. The addition of a second mixer can dramatically improve conversion efficiencies for the large bandwidths of interest for inertial confinement fusion. Designs that involve two doublers similarly offer a higher dynamic range of conversion efficiency versus intensity than the usual two-crystal design.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for instance, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981), Ref.  2, and references therein.
    [CrossRef]
  2. D. Eimerl, IEEE J. Quantum Electron. QE-23, 575 (1987); P. J. Wegner, M. A. Henesian, D. R. Speck, C. Bibeau, R. B. Ehrlich, C. W. Laumann, J. K. Lawson, and T. L. Weiland, Appl. Opt. 31, 6414 (1992).
    [CrossRef] [PubMed]
  3. W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, and S. D. Craxton, Opt. Commun. 34, 469 (1980); C. E. Barker, D. Milam, and R. Boyd, Lawrence Livermore Natl. Lab. ICF Q. Rep. 3, 55 (1993); C. E. Barker, B. M. Wonterghem, J. M. Auerbach, R. J. Foley, J. R. Murray, J. H. Campbell, J. A. Caird, D. R. Speck, and B. W. Woods, Proc. SPIE 2633, 398 (1995).
    [CrossRef]
  4. J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, J. Opt. Soc. Am. B 6, 2402 (1989).
    [CrossRef]
  5. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, J. Appl. Phys. 66, 3456 (1989).
    [CrossRef]
  6. W. J. Hogan, J. A. Paisner, W. H. Lowdermilk, M. S. Sorem, J. D. Boyes, and S. A. Kumpin, Vol. 140 of Institute of Physics Conference Series (Institute of Physics, London, 1995), pp. 71–80.
  7. The theoretical and computational approach used in obtaining the results reported herein has been described in D. Eimerl, J. M. Auerbach, and P. W. Milonni, J. Mod. Opt. 42, 1037 (1995); P. W. Milonni, J. M. Auerbach, and D. Eimerl, Proc. SPIE 2633, 230 (1995).
    [CrossRef]

1995 (1)

The theoretical and computational approach used in obtaining the results reported herein has been described in D. Eimerl, J. M. Auerbach, and P. W. Milonni, J. Mod. Opt. 42, 1037 (1995); P. W. Milonni, J. M. Auerbach, and D. Eimerl, Proc. SPIE 2633, 230 (1995).
[CrossRef]

1989 (2)

J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, J. Opt. Soc. Am. B 6, 2402 (1989).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, J. Appl. Phys. 66, 3456 (1989).
[CrossRef]

1987 (1)

D. Eimerl, IEEE J. Quantum Electron. QE-23, 575 (1987); P. J. Wegner, M. A. Henesian, D. R. Speck, C. Bibeau, R. B. Ehrlich, C. W. Laumann, J. K. Lawson, and T. L. Weiland, Appl. Opt. 31, 6414 (1992).
[CrossRef] [PubMed]

1981 (1)

See, for instance, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981), Ref.  2, and references therein.
[CrossRef]

1980 (1)

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, and S. D. Craxton, Opt. Commun. 34, 469 (1980); C. E. Barker, D. Milam, and R. Boyd, Lawrence Livermore Natl. Lab. ICF Q. Rep. 3, 55 (1993); C. E. Barker, B. M. Wonterghem, J. M. Auerbach, R. J. Foley, J. R. Murray, J. H. Campbell, J. A. Caird, D. R. Speck, and B. W. Woods, Proc. SPIE 2633, 398 (1995).
[CrossRef]

Auerbach, J. M.

The theoretical and computational approach used in obtaining the results reported herein has been described in D. Eimerl, J. M. Auerbach, and P. W. Milonni, J. Mod. Opt. 42, 1037 (1995); P. W. Milonni, J. M. Auerbach, and D. Eimerl, Proc. SPIE 2633, 230 (1995).
[CrossRef]

Boni, R.

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, and S. D. Craxton, Opt. Commun. 34, 469 (1980); C. E. Barker, D. Milam, and R. Boyd, Lawrence Livermore Natl. Lab. ICF Q. Rep. 3, 55 (1993); C. E. Barker, B. M. Wonterghem, J. M. Auerbach, R. J. Foley, J. R. Murray, J. H. Campbell, J. A. Caird, D. R. Speck, and B. W. Woods, Proc. SPIE 2633, 398 (1995).
[CrossRef]

Boyes, J. D.

W. J. Hogan, J. A. Paisner, W. H. Lowdermilk, M. S. Sorem, J. D. Boyes, and S. A. Kumpin, Vol. 140 of Institute of Physics Conference Series (Institute of Physics, London, 1995), pp. 71–80.

Craxton, R. S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, J. Appl. Phys. 66, 3456 (1989).
[CrossRef]

See, for instance, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981), Ref.  2, and references therein.
[CrossRef]

Craxton, S. D.

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, and S. D. Craxton, Opt. Commun. 34, 469 (1980); C. E. Barker, D. Milam, and R. Boyd, Lawrence Livermore Natl. Lab. ICF Q. Rep. 3, 55 (1993); C. E. Barker, B. M. Wonterghem, J. M. Auerbach, R. J. Foley, J. R. Murray, J. H. Campbell, J. A. Caird, D. R. Speck, and B. W. Woods, Proc. SPIE 2633, 398 (1995).
[CrossRef]

Ehrlich, R. B.

Eimerl, D.

The theoretical and computational approach used in obtaining the results reported herein has been described in D. Eimerl, J. M. Auerbach, and P. W. Milonni, J. Mod. Opt. 42, 1037 (1995); P. W. Milonni, J. M. Auerbach, and D. Eimerl, Proc. SPIE 2633, 230 (1995).
[CrossRef]

D. Eimerl, IEEE J. Quantum Electron. QE-23, 575 (1987); P. J. Wegner, M. A. Henesian, D. R. Speck, C. Bibeau, R. B. Ehrlich, C. W. Laumann, J. K. Lawson, and T. L. Weiland, Appl. Opt. 31, 6414 (1992).
[CrossRef] [PubMed]

Hogan, W. J.

W. J. Hogan, J. A. Paisner, W. H. Lowdermilk, M. S. Sorem, J. D. Boyes, and S. A. Kumpin, Vol. 140 of Institute of Physics Conference Series (Institute of Physics, London, 1995), pp. 71–80.

Jacobs, S. D.

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, and S. D. Craxton, Opt. Commun. 34, 469 (1980); C. E. Barker, D. Milam, and R. Boyd, Lawrence Livermore Natl. Lab. ICF Q. Rep. 3, 55 (1993); C. E. Barker, B. M. Wonterghem, J. M. Auerbach, R. J. Foley, J. R. Murray, J. H. Campbell, J. A. Caird, D. R. Speck, and B. W. Woods, Proc. SPIE 2633, 398 (1995).
[CrossRef]

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, J. Appl. Phys. 66, 3456 (1989).
[CrossRef]

Kumpin, S. A.

W. J. Hogan, J. A. Paisner, W. H. Lowdermilk, M. S. Sorem, J. D. Boyes, and S. A. Kumpin, Vol. 140 of Institute of Physics Conference Series (Institute of Physics, London, 1995), pp. 71–80.

Kyrazis, D. T.

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, J. Appl. Phys. 66, 3456 (1989).
[CrossRef]

Lowdermilk, W. H.

W. J. Hogan, J. A. Paisner, W. H. Lowdermilk, M. S. Sorem, J. D. Boyes, and S. A. Kumpin, Vol. 140 of Institute of Physics Conference Series (Institute of Physics, London, 1995), pp. 71–80.

Milonni, P. W.

The theoretical and computational approach used in obtaining the results reported herein has been described in D. Eimerl, J. M. Auerbach, and P. W. Milonni, J. Mod. Opt. 42, 1037 (1995); P. W. Milonni, J. M. Auerbach, and D. Eimerl, Proc. SPIE 2633, 230 (1995).
[CrossRef]

Murray, J. R.

Paisner, J. A.

W. J. Hogan, J. A. Paisner, W. H. Lowdermilk, M. S. Sorem, J. D. Boyes, and S. A. Kumpin, Vol. 140 of Institute of Physics Conference Series (Institute of Physics, London, 1995), pp. 71–80.

Rizzo, J. E.

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, and S. D. Craxton, Opt. Commun. 34, 469 (1980); C. E. Barker, D. Milam, and R. Boyd, Lawrence Livermore Natl. Lab. ICF Q. Rep. 3, 55 (1993); C. E. Barker, B. M. Wonterghem, J. M. Auerbach, R. J. Foley, J. R. Murray, J. H. Campbell, J. A. Caird, D. R. Speck, and B. W. Woods, Proc. SPIE 2633, 398 (1995).
[CrossRef]

Seka, W.

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, and S. D. Craxton, Opt. Commun. 34, 469 (1980); C. E. Barker, D. Milam, and R. Boyd, Lawrence Livermore Natl. Lab. ICF Q. Rep. 3, 55 (1993); C. E. Barker, B. M. Wonterghem, J. M. Auerbach, R. J. Foley, J. R. Murray, J. H. Campbell, J. A. Caird, D. R. Speck, and B. W. Woods, Proc. SPIE 2633, 398 (1995).
[CrossRef]

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, J. Appl. Phys. 66, 3456 (1989).
[CrossRef]

Skupsky, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, J. Appl. Phys. 66, 3456 (1989).
[CrossRef]

Smith, J. R.

Sorem, M. S.

W. J. Hogan, J. A. Paisner, W. H. Lowdermilk, M. S. Sorem, J. D. Boyes, and S. A. Kumpin, Vol. 140 of Institute of Physics Conference Series (Institute of Physics, London, 1995), pp. 71–80.

Soures, J. M.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, J. Appl. Phys. 66, 3456 (1989).
[CrossRef]

Thompson, C. E.

Weiland, T. L.

Wilcox, R. B.

IEEE J. Quantum Electron. (2)

See, for instance, R. S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981), Ref.  2, and references therein.
[CrossRef]

D. Eimerl, IEEE J. Quantum Electron. QE-23, 575 (1987); P. J. Wegner, M. A. Henesian, D. R. Speck, C. Bibeau, R. B. Ehrlich, C. W. Laumann, J. K. Lawson, and T. L. Weiland, Appl. Opt. 31, 6414 (1992).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, J. Appl. Phys. 66, 3456 (1989).
[CrossRef]

J. Mod. Opt. (1)

The theoretical and computational approach used in obtaining the results reported herein has been described in D. Eimerl, J. M. Auerbach, and P. W. Milonni, J. Mod. Opt. 42, 1037 (1995); P. W. Milonni, J. M. Auerbach, and D. Eimerl, Proc. SPIE 2633, 230 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, and S. D. Craxton, Opt. Commun. 34, 469 (1980); C. E. Barker, D. Milam, and R. Boyd, Lawrence Livermore Natl. Lab. ICF Q. Rep. 3, 55 (1993); C. E. Barker, B. M. Wonterghem, J. M. Auerbach, R. J. Foley, J. R. Murray, J. H. Campbell, J. A. Caird, D. R. Speck, and B. W. Woods, Proc. SPIE 2633, 398 (1995).
[CrossRef]

Other (1)

W. J. Hogan, J. A. Paisner, W. H. Lowdermilk, M. S. Sorem, J. D. Boyes, and S. A. Kumpin, Vol. 140 of Institute of Physics Conference Series (Institute of Physics, London, 1995), pp. 71–80.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Tripling efficiency versus input red frequency bandwidth (FWHM) for the baseline doubler followed by an 8-mm/650-µrad mixer and a 10-mm/470 µrad mixer (solid curves), compared with results for the baseline design with a single 9-mm/0-µrad mixer (dashed curves) for input red plane waves of intensities (a) 3, (b) 1.5, and (c) 0.5 GW/cm2.

Fig. 2
Fig. 2

Red intensity temporal profile (dashed curve) incident upon the doubler, together with the green intensity profile emerging from the doubler (dotted curve) and the blue intensity profile (solid curve) from the mixer in the baseline design. The input bandwidth is 100  GHz, and the modulation frequency is 5  GHz.

Fig. 3
Fig. 3

Blue intensity profiles from the first mixer (dashed curve) and the second mixer (solid curve) for the two-mixer design of Fig.  1 for the same phase-modulated input red beam as in Fig.  2.

Fig. 4
Fig. 4

As in Fig.  1 but with the baseline doubler replaced by two type  I KDP doublers (13  mm/385 µrad and 10  mm/494 µrad). Curves (a), (b), and (c) are for 3, 1.5, and 0.5  GW/cm2, respectively.

Metrics