Abstract

We show that high-Q whispering-gallery modes in fused-silica microspheres can be efficiently excited by an optical fiber taper. By adjusting the taper diameter to match the propagation constant of the mode in the taper with that of the resonant mode of interest, one can couple more than 90% of the light into the sphere. This represents a significant improvement in excitation efficiency compared with other methods and is, we believe, the most efficient excitation of a high-Q microcavity resonance by a monomode optical fiber yet demonstrated.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g. P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988); R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  2. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
    [CrossRef]
  3. L. Collot, V. Lefévre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993);D. W. Vernooy and H. J. Kimble, Phys. Rev. A 55, 1239 (1997).
    [CrossRef]
  4. A. Serpenguzel, S. Arnold, and G. Griffel, Opt. Lett. 20, 654 (1995);G. Griffel, S. Arnold, D. Taskent, A. Serpenguzel, J. Connolly, and N. Morris, Opt. Lett. 21, 695 (1996).
    [CrossRef] [PubMed]
  5. N. Dubreuil, J. C. Knight, D. Leventhal, V. Sandoghdar, J. Hare, and V. Lefévre, Opt. Lett. 20, 813 (1995).
    [CrossRef] [PubMed]
  6. S. Schiller, Appl. Opt. 32, 2181 (1993).
    [CrossRef] [PubMed]
  7. K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and J. P. Payne, Electron. Lett. 22, 105 (1986).
    [CrossRef]
  8. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1988); S. LaCroix, Département de Génie Physique, Ećole Polytechnique de Montreal, P.O. Box 6079, Montréal, Quebec, H3C 3A7 Canada (personal communication, 1997).
  9. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
    [CrossRef] [PubMed]
  10. J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefévre-Seguin, J. M. Raimond, and S. Haroche, Opt. Lett. 20, 1515 (1995).
    [CrossRef] [PubMed]
  11. S. Schiller, I. I. Yu, M. M. Fejer, and R. L. Byer, Opt. Lett. 17, 378 (1992).
    [CrossRef] [PubMed]

1996 (1)

1995 (3)

1993 (2)

S. Schiller, Appl. Opt. 32, 2181 (1993).
[CrossRef] [PubMed]

L. Collot, V. Lefévre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993);D. W. Vernooy and H. J. Kimble, Phys. Rev. A 55, 1239 (1997).
[CrossRef]

1992 (1)

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

1986 (1)

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and J. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Arnold, S.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Brune, M.

L. Collot, V. Lefévre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993);D. W. Vernooy and H. J. Kimble, Phys. Rev. A 55, 1239 (1997).
[CrossRef]

Byer, R. L.

Collot, L.

L. Collot, V. Lefévre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993);D. W. Vernooy and H. J. Kimble, Phys. Rev. A 55, 1239 (1997).
[CrossRef]

Dubreuil, N.

Fejer, M. M.

Gorodetsky, M. L.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
[CrossRef] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Griffel, G.

Hare, J.

Haroche, S.

J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefévre-Seguin, J. M. Raimond, and S. Haroche, Opt. Lett. 20, 1515 (1995).
[CrossRef] [PubMed]

L. Collot, V. Lefévre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993);D. W. Vernooy and H. J. Kimble, Phys. Rev. A 55, 1239 (1997).
[CrossRef]

Hussey, C. D.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and J. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Ilchenko, V. S.

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
[CrossRef] [PubMed]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Jedrzejewski, K. P.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and J. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Knight, J. C.

Lefévre, V.

Lefévre-Seguin, V.

J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefévre-Seguin, J. M. Raimond, and S. Haroche, Opt. Lett. 20, 1515 (1995).
[CrossRef] [PubMed]

L. Collot, V. Lefévre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993);D. W. Vernooy and H. J. Kimble, Phys. Rev. A 55, 1239 (1997).
[CrossRef]

Leventhal, D.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1988); S. LaCroix, Département de Génie Physique, Ećole Polytechnique de Montreal, P.O. Box 6079, Montréal, Quebec, H3C 3A7 Canada (personal communication, 1997).

Martinez, F.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and J. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Minelly, J. D.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and J. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Payne, J. P.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and J. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Raimond, J. M.

J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefévre-Seguin, J. M. Raimond, and S. Haroche, Opt. Lett. 20, 1515 (1995).
[CrossRef] [PubMed]

L. Collot, V. Lefévre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993);D. W. Vernooy and H. J. Kimble, Phys. Rev. A 55, 1239 (1997).
[CrossRef]

Sandoghdar, V.

Savchenkov, A. A.

Schiller, S.

Serpenguzel, A.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1988); S. LaCroix, Département de Génie Physique, Ećole Polytechnique de Montreal, P.O. Box 6079, Montréal, Quebec, H3C 3A7 Canada (personal communication, 1997).

Yu, I. I.

Appl. Opt. (1)

Electron. Lett. (1)

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and J. P. Payne, Electron. Lett. 22, 105 (1986).
[CrossRef]

Europhys. Lett. (1)

L. Collot, V. Lefévre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993);D. W. Vernooy and H. J. Kimble, Phys. Rev. A 55, 1239 (1997).
[CrossRef]

Opt. Lett. (5)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Other (2)

See, e.g. P. W. Barber and R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988); R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1988); S. LaCroix, Département de Génie Physique, Ećole Polytechnique de Montreal, P.O. Box 6079, Montréal, Quebec, H3C 3A7 Canada (personal communication, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Calculated values of the propagation constants for a fiber taper (solid curve) as a function of the radius (plotted on the top axis) and for the first few radial mode numbers of WGM resonance for spheres of different sizes, plotted on the lower axis.

Fig. 2
Fig. 2

(a) Schematic representation of the experiment. The microsphere is mounted upon xyz micropositioners to allow it to be manipulated with respect to the tapered fiber. (b) Example of a resonance dip appearing on the transmission signal. In this case 72% of the light is coupled into the resonance, which has a Q of 2×106. The sphere size is a85 µm, and the taper size is ρ1.7 µm. The inset shows a narrower mode in a larger sphere with a larger taper radius (a210 µm, ρ2.25 µm, Q=5×107, excitation efficiency 37%).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β2=k2N2-2.4052/ρ2,

Metrics