Abstract

The multiple, active, computer-generated hologram (MACH) is a novel device combining the attributes of electrically controllable diffraction gratings and computer-generated holograms. The version discussed here consists of a surface relief transmitting structure immersed in a nematic liquid crystal and sandwiched between two, planar indium tin oxide electrodes. Under control of a single applied voltage, the device can selectively generate any one of a number of desired, uncorrelated optical wave fronts. The device principles are discussed and experimental results presented. There is a brief discussion of the relative merits of the MACH and electrically addressed spatial light modulators.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Stalder and P. Ehbets, Opt. Lett. 19, 1 (1994).
    [CrossRef] [PubMed]
  2. D. Columbus, J. Hossfeld, and T. Tschudi, Optik 95, 177 (1994).
  3. K. Hirabayashi, T. Yamamoto, and M. Yamaguchi, Inst. Phys. Conf. Ser. 139, 195 (1995).
  4. L. G. Commander, S. E. Day, C. H. Chia, and D. R. Selviah, Eur. Opt. Soc. Top. Meeting Dig. 5, 72 (1995).
  5. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, Opt. Lett. 21, 689 (1996).
    [CrossRef] [PubMed]
  6. S. Schullze and W. v. Reden, Proc. SPIE 2408, 113 (1995).
    [CrossRef]
  7. M. Clark and R. Smith, Opt. Commun. 124, 150 (1996).
    [CrossRef]
  8. B. K. Jennison, J. P. Allebach, and D. W. Sweeney, Opt. Eng. 28, 629 (1989).
    [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics, 1st ed. (McGraw-Hill, New York, 1988).
  10. C. Slinger, P. Brett, V. Hui, G. Monnington, D. Pain, and I. Sage, “Liquid crystal materials, devices and applications,” Proc. SPIE3015 (to be published).

1996 (2)

1995 (3)

K. Hirabayashi, T. Yamamoto, and M. Yamaguchi, Inst. Phys. Conf. Ser. 139, 195 (1995).

L. G. Commander, S. E. Day, C. H. Chia, and D. R. Selviah, Eur. Opt. Soc. Top. Meeting Dig. 5, 72 (1995).

S. Schullze and W. v. Reden, Proc. SPIE 2408, 113 (1995).
[CrossRef]

1994 (2)

M. Stalder and P. Ehbets, Opt. Lett. 19, 1 (1994).
[CrossRef] [PubMed]

D. Columbus, J. Hossfeld, and T. Tschudi, Optik 95, 177 (1994).

1989 (1)

B. K. Jennison, J. P. Allebach, and D. W. Sweeney, Opt. Eng. 28, 629 (1989).
[CrossRef]

Allebach, J. P.

B. K. Jennison, J. P. Allebach, and D. W. Sweeney, Opt. Eng. 28, 629 (1989).
[CrossRef]

Brett, P.

C. Slinger, P. Brett, V. Hui, G. Monnington, D. Pain, and I. Sage, “Liquid crystal materials, devices and applications,” Proc. SPIE3015 (to be published).

Chia, C. H.

L. G. Commander, S. E. Day, C. H. Chia, and D. R. Selviah, Eur. Opt. Soc. Top. Meeting Dig. 5, 72 (1995).

Clark, M.

M. Clark and R. Smith, Opt. Commun. 124, 150 (1996).
[CrossRef]

Columbus, D.

D. Columbus, J. Hossfeld, and T. Tschudi, Optik 95, 177 (1994).

Commander, L. G.

L. G. Commander, S. E. Day, C. H. Chia, and D. R. Selviah, Eur. Opt. Soc. Top. Meeting Dig. 5, 72 (1995).

Day, S. E.

L. G. Commander, S. E. Day, C. H. Chia, and D. R. Selviah, Eur. Opt. Soc. Top. Meeting Dig. 5, 72 (1995).

Dorschner, T. A.

Ehbets, P.

Friedman, L. J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 1st ed. (McGraw-Hill, New York, 1988).

Hirabayashi, K.

K. Hirabayashi, T. Yamamoto, and M. Yamaguchi, Inst. Phys. Conf. Ser. 139, 195 (1995).

Hobbs, D. S.

Hossfeld, J.

D. Columbus, J. Hossfeld, and T. Tschudi, Optik 95, 177 (1994).

Hui, V.

C. Slinger, P. Brett, V. Hui, G. Monnington, D. Pain, and I. Sage, “Liquid crystal materials, devices and applications,” Proc. SPIE3015 (to be published).

Jennison, B. K.

B. K. Jennison, J. P. Allebach, and D. W. Sweeney, Opt. Eng. 28, 629 (1989).
[CrossRef]

Monnington, G.

C. Slinger, P. Brett, V. Hui, G. Monnington, D. Pain, and I. Sage, “Liquid crystal materials, devices and applications,” Proc. SPIE3015 (to be published).

Pain, D.

C. Slinger, P. Brett, V. Hui, G. Monnington, D. Pain, and I. Sage, “Liquid crystal materials, devices and applications,” Proc. SPIE3015 (to be published).

Reden, W. v.

S. Schullze and W. v. Reden, Proc. SPIE 2408, 113 (1995).
[CrossRef]

Resler, D. P.

Sage, I.

C. Slinger, P. Brett, V. Hui, G. Monnington, D. Pain, and I. Sage, “Liquid crystal materials, devices and applications,” Proc. SPIE3015 (to be published).

Schullze, S.

S. Schullze and W. v. Reden, Proc. SPIE 2408, 113 (1995).
[CrossRef]

Selviah, D. R.

L. G. Commander, S. E. Day, C. H. Chia, and D. R. Selviah, Eur. Opt. Soc. Top. Meeting Dig. 5, 72 (1995).

Sharp, R. C.

Slinger, C.

C. Slinger, P. Brett, V. Hui, G. Monnington, D. Pain, and I. Sage, “Liquid crystal materials, devices and applications,” Proc. SPIE3015 (to be published).

Smith, R.

M. Clark and R. Smith, Opt. Commun. 124, 150 (1996).
[CrossRef]

Stalder, M.

Sweeney, D. W.

B. K. Jennison, J. P. Allebach, and D. W. Sweeney, Opt. Eng. 28, 629 (1989).
[CrossRef]

Tschudi, T.

D. Columbus, J. Hossfeld, and T. Tschudi, Optik 95, 177 (1994).

Yamaguchi, M.

K. Hirabayashi, T. Yamamoto, and M. Yamaguchi, Inst. Phys. Conf. Ser. 139, 195 (1995).

Yamamoto, T.

K. Hirabayashi, T. Yamamoto, and M. Yamaguchi, Inst. Phys. Conf. Ser. 139, 195 (1995).

Eur. Opt. Soc. Top. Meeting Dig. (1)

L. G. Commander, S. E. Day, C. H. Chia, and D. R. Selviah, Eur. Opt. Soc. Top. Meeting Dig. 5, 72 (1995).

Inst. Phys. Conf. Ser. (1)

K. Hirabayashi, T. Yamamoto, and M. Yamaguchi, Inst. Phys. Conf. Ser. 139, 195 (1995).

Opt. Commun. (1)

M. Clark and R. Smith, Opt. Commun. 124, 150 (1996).
[CrossRef]

Opt. Eng. (1)

B. K. Jennison, J. P. Allebach, and D. W. Sweeney, Opt. Eng. 28, 629 (1989).
[CrossRef]

Opt. Lett. (2)

Optik (1)

D. Columbus, J. Hossfeld, and T. Tschudi, Optik 95, 177 (1994).

Proc. SPIE (1)

S. Schullze and W. v. Reden, Proc. SPIE 2408, 113 (1995).
[CrossRef]

Other (2)

J. W. Goodman, Introduction to Fourier Optics, 1st ed. (McGraw-Hill, New York, 1988).

C. Slinger, P. Brett, V. Hui, G. Monnington, D. Pain, and I. Sage, “Liquid crystal materials, devices and applications,” Proc. SPIE3015 (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of one MACH device configuration.

Fig. 2
Fig. 2

Design for experimental verification of the MACH principle. Top: substrate depth profile (nlevel=3). Bottom: desired Fourier plane intensity outputs, designed with DS shown for the two design voltages. Index-matching case not shown. Efficiencies (ratio of power in R to input power of MACH): 1.2% for v1 and 2.2% for v2.

Fig. 3
Fig. 3

Experimental verification of the MACH principle. Top: output intensity patterns predicted from 768×768 pixel device, using a diffraction integral calculation. Index-matching case not shown. Bottom: photographs of experimentally observed intensity outputs. Index-matching case not shown.

Fig. 4
Fig. 4

Four-output MACH, designed with a variant of the POCS algorithm. Top: substrate depth profile. Middle and bottom: optimized Fourier plane intensity outputs at voltages v1, v2, v3, and v4. Output efficiencies are 1%.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SBWPsubstrate=mnlog2nlevels.
enpatternsSBWPR/SBWPsubstrate.

Metrics