Abstract

We demonstrate a self-starting, passively mode-locked short-cavity Cr4+:YAG laser that supports fundamental intracavity solitons over wide ranges of cavity group-velocity dispersion and pulse energies. The total dispersion and nonlinear effects are small enough that stable, N=1 soliton pulses are generated. Equally spaced multiple pulsing is also observed, with fundamental soliton behavior preserved. Regions of bistability exist where, at a constant cavity dispersion, the laser can produce transform-limited pulses of a different width and energy. The laser produces 200-fs pulses at approximately 0.9-, 1.8-, and 2.7-GHz repetition rates with a total of 82  mW of average output power.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Krausz, M. E. Fermann, T. Barbec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
    [Crossref]
  2. Y. Ishida and K. Naganuma, Opt. Lett. 19, 2003 (1994).
    [Crossref] [PubMed]
  3. Y. P. Tong, J. M. Sutherland, P. M. W. French, J. R. Taylor, A. V. Shestakov, and B. H. T. Chai, Opt. Lett. 21, 644 (1996).
    [Crossref] [PubMed]
  4. B. C. Collings, J. B. Stark, S. Tsuda, W. H. Knox, J. E. Cunningham, W. Y. Jan, R. Pathak, and K. Bergman, Opt. Lett. 21, 1171 (1996).
    [Crossref] [PubMed]
  5. S. Tsuda, W. H. Knox, E. A. de Souza, W. Y. Jan, and J. E. Cunningham, Opt. Lett. 20, 1406 (1995).
    [Crossref] [PubMed]
  6. D. Kopf, K. J. Weingarten, L. R. Brovelli, M. Kamp, and U. Keller, Opt. Lett. 19, 2143 (1994).
    [Crossref] [PubMed]
  7. J. Zhou, G. Taft, C. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, Opt. Lett. 19, 1149 (1994).
    [Crossref] [PubMed]

1996 (2)

1995 (1)

1994 (3)

1992 (1)

F. Krausz, M. E. Fermann, T. Barbec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[Crossref]

Barbec, T.

F. Krausz, M. E. Fermann, T. Barbec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[Crossref]

Bergman, K.

Brovelli, L. R.

Chai, B. H. T.

Christov, I. P.

Collings, B. C.

Cunningham, J. E.

Curley, P. F.

F. Krausz, M. E. Fermann, T. Barbec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[Crossref]

de Souza, E. A.

Fermann, M. E.

F. Krausz, M. E. Fermann, T. Barbec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[Crossref]

French, P. M. W.

Hofer, M.

F. Krausz, M. E. Fermann, T. Barbec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[Crossref]

Huang, C.

Ishida, Y.

Jan, W. Y.

Kamp, M.

Kapteyn, H. C.

Keller, U.

Knox, W. H.

Kopf, D.

Krausz, F.

F. Krausz, M. E. Fermann, T. Barbec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[Crossref]

Murnane, M. M.

Naganuma, K.

Ober, M. H.

F. Krausz, M. E. Fermann, T. Barbec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[Crossref]

Pathak, R.

Schmidt, A. J.

F. Krausz, M. E. Fermann, T. Barbec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[Crossref]

Shestakov, A. V.

Spielmann, C.

F. Krausz, M. E. Fermann, T. Barbec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[Crossref]

Stark, J. B.

Sutherland, J. M.

Taft, G.

Taylor, J. R.

Tong, Y. P.

Tsuda, S.

Weingarten, K. J.

Wintner, E.

F. Krausz, M. E. Fermann, T. Barbec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[Crossref]

Zhou, J.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of the laser cavity and structure of the SBR. R, reflectivity.

Fig. 2
Fig. 2

Autocorrelation and optical spectrum (left inset) of the mode-locked output and a 2.7-GHz pulse train(right inset).

Fig. 3
Fig. 3

Pulse width and time–bandwidth product of the mode-locked output with one (circles), two (squares), or three (triangles) pulses circulating in the cavity versus total cavity GVD.

Fig. 4
Fig. 4

Total average output power and soliton parameter of the mode-locked output with one (circles), two (squares), or three (triangles) pulses circulating in the cavity versus total cavity GVD.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

LD=τ02β2, LNL=1γP0, γ=n2ω0cAeff.

Metrics