Abstract

A theoretical analysis is presented that describes wave-mixing processes in thin holographic gratings for phase-modulated beams. Experiments with photorefractive Bi12TiO20 crystals in which the signals for Bragg diffraction and for the first non-Bragg diffraction order were measured support the analysis.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Hall, M. A. Fiddy, and M. S. Ner, Opt. Lett. 5, 484 (1980).
  2. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [Crossref]
  3. P. Refreigier, L. Solymar, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
    [Crossref]
  4. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 65, 2216 (1990).
    [Crossref]
  5. M. P. Petrov, V. M. Petrov, I. S. Zouboulis, and L. P. Xu, Opt. Commun. 134, 569 (1997).
    [Crossref]

1997 (1)

M. P. Petrov, V. M. Petrov, I. S. Zouboulis, and L. P. Xu, Opt. Commun. 134, 569 (1997).
[Crossref]

1990 (1)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 65, 2216 (1990).
[Crossref]

1985 (1)

P. Refreigier, L. Solymar, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

1980 (1)

T. J. Hall, M. A. Fiddy, and M. S. Ner, Opt. Lett. 5, 484 (1980).

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Fiddy, M. A.

T. J. Hall, M. A. Fiddy, and M. S. Ner, Opt. Lett. 5, 484 (1980).

Hall, T. J.

T. J. Hall, M. A. Fiddy, and M. S. Ner, Opt. Lett. 5, 484 (1980).

Huignard, J. P.

P. Refreigier, L. Solymar, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Ner, M. S.

T. J. Hall, M. A. Fiddy, and M. S. Ner, Opt. Lett. 5, 484 (1980).

Odoulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Petrov, M. P.

M. P. Petrov, V. M. Petrov, I. S. Zouboulis, and L. P. Xu, Opt. Commun. 134, 569 (1997).
[Crossref]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 65, 2216 (1990).
[Crossref]

Petrov, V. M.

M. P. Petrov, V. M. Petrov, I. S. Zouboulis, and L. P. Xu, Opt. Commun. 134, 569 (1997).
[Crossref]

Rajbenbach, H.

P. Refreigier, L. Solymar, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

Refreigier, P.

P. Refreigier, L. Solymar, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

Sokolov, I. A.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 65, 2216 (1990).
[Crossref]

Solymar, L.

P. Refreigier, L. Solymar, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Stepanov, S. I.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 65, 2216 (1990).
[Crossref]

Trofimov, G. S.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 65, 2216 (1990).
[Crossref]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

Xu, L. P.

M. P. Petrov, V. M. Petrov, I. S. Zouboulis, and L. P. Xu, Opt. Commun. 134, 569 (1997).
[Crossref]

Zouboulis, I. S.

M. P. Petrov, V. M. Petrov, I. S. Zouboulis, and L. P. Xu, Opt. Commun. 134, 569 (1997).
[Crossref]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[Crossref]

J. Appl. Phys. (2)

P. Refreigier, L. Solymar, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 58, 45 (1985).
[Crossref]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, J. Appl. Phys. 65, 2216 (1990).
[Crossref]

Opt. Commun. (1)

M. P. Petrov, V. M. Petrov, I. S. Zouboulis, and L. P. Xu, Opt. Commun. 134, 569 (1997).
[Crossref]

Opt. Lett. (1)

T. J. Hall, M. A. Fiddy, and M. S. Ner, Opt. Lett. 5, 484 (1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Experimental setup showing the incident beams R and S and the beams (Bragg and non-Bragg) diffracted from a thin grating: , He–Ne or argon-ion laser; , vibrating mirror (or electro-optic modulator); , BTO crystal; , photodetector positions; P1, P2, polarizers; b, beam splitter. (b) Magnified view of the BTO crystal interaction volume: , electrodes; , BTO crystal; , holographic grating. Kg denotes the grating wave vector and E0 the external electric field.

Fig. 2
Fig. 2

(a) Two-wave-mixing signal I2 W and (b) non-Bragg diffraction signal INB as a function of Ω/2π for the fast sample (IS+IR=2000 W/m2, m=1, E0=1.3 kV/cm, Kg=2π×46 mm-1, Θ=0.56 rad, and λ=515 nm). The solid curves are fits according to relations  (10) and (13), assuming that d1.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

dEsctdt=-E0mexpiΘ cosΩt+Esctτ11-id,
d=KgL0,
Esct=Esc01+F,
Esc0=-mE0,
F=F+iF,
F=Θgd1-g21+d2 sinΩt-2g cosΩt1+2g21-d2+g41+d22,
F=Θg1+g21+d2 sinΩt+1+g21-d2 cosΩt1+2g21-d2+g41+d22,
g=Ωτ1.
I2W=Iconst+2IRηBF-2ISIRηB1/2Θ cosΩt-F,
I2WIconst-2ISIRηB1/2Θg1+g23+d4+g41+d223-2d2+g61+d241/21+2g21-d2+g41+d22 cosΩt+φ,
φ=arctan1+g21+d2g1-d2+g21+d22.
I2WIconst-2ISIRηBΘ1/21+d2-1/2g21+d22 cosΩt.
INBIconst+2FISηNB+Φm3=Iconst+2ISηNBΘgd cosΩt+γ1+2g21-d2+g41+d221/2+Φm3,
γ=arctang21+d2-12g
g2=1/1+d2.

Metrics