Abstract

The increase in the circulating signal and idler fields that occurs in a high-Q doubly resonant optical parametric oscillator (OPO) as it approaches resonance results in a small increase in the crystal temperature owing to absorption of the generated fields. The temperature change affects the refractive index of the crystal and alters the optical path length of the cavity. This effect may lead to self-frequency locking of the OPO to a specific resonance of the signal and idler fields, and it also results in peculiarities in the transient response of the system as it is scanned through resonance. We show that the experimentally observed effects are consistent with the results of a numerical model of the OPO.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription