Abstract

The increase in the circulating signal and idler fields that occurs in a high-Q doubly resonant optical parametric oscillator (OPO) as it approaches resonance results in a small increase in the crystal temperature owing to absorption of the generated fields. The temperature change affects the refractive index of the crystal and alters the optical path length of the cavity. This effect may lead to self-frequency locking of the OPO to a specific resonance of the signal and idler fields, and it also results in peculiarities in the transient response of the system as it is scanned through resonance. We show that the experimentally observed effects are consistent with the results of a numerical model of the OPO.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Serkland, R. C. Eckardt, and R. L. Byer, Opt. Lett. 19, 1046 (1994).
    [CrossRef] [PubMed]
  2. G. M. Gibson, G. R. Morrison, P. L. Hansen, M. H. Dunn, and M. J. Padgett, Opt. Commun. 136, 423 (1997).
    [CrossRef]
  3. S. T. Yang, R. C. Eckardt, and R. L. Byer, J. Opt. Soc. Am. B. 10, 1684 (1993).
    [CrossRef]
  4. P. L. Hansen, “Coherent tunable solid-state light sources,” Ph.D. dissertation (Department of Physics, Technical University of Denmark, Lyngby, Denmark, 1996).

1997 (1)

G. M. Gibson, G. R. Morrison, P. L. Hansen, M. H. Dunn, and M. J. Padgett, Opt. Commun. 136, 423 (1997).
[CrossRef]

1994 (1)

1993 (1)

S. T. Yang, R. C. Eckardt, and R. L. Byer, J. Opt. Soc. Am. B. 10, 1684 (1993).
[CrossRef]

Byer, R. L.

D. K. Serkland, R. C. Eckardt, and R. L. Byer, Opt. Lett. 19, 1046 (1994).
[CrossRef] [PubMed]

S. T. Yang, R. C. Eckardt, and R. L. Byer, J. Opt. Soc. Am. B. 10, 1684 (1993).
[CrossRef]

Dunn, M. H.

G. M. Gibson, G. R. Morrison, P. L. Hansen, M. H. Dunn, and M. J. Padgett, Opt. Commun. 136, 423 (1997).
[CrossRef]

Eckardt, R. C.

D. K. Serkland, R. C. Eckardt, and R. L. Byer, Opt. Lett. 19, 1046 (1994).
[CrossRef] [PubMed]

S. T. Yang, R. C. Eckardt, and R. L. Byer, J. Opt. Soc. Am. B. 10, 1684 (1993).
[CrossRef]

Gibson, G. M.

G. M. Gibson, G. R. Morrison, P. L. Hansen, M. H. Dunn, and M. J. Padgett, Opt. Commun. 136, 423 (1997).
[CrossRef]

Hansen, P. L.

G. M. Gibson, G. R. Morrison, P. L. Hansen, M. H. Dunn, and M. J. Padgett, Opt. Commun. 136, 423 (1997).
[CrossRef]

P. L. Hansen, “Coherent tunable solid-state light sources,” Ph.D. dissertation (Department of Physics, Technical University of Denmark, Lyngby, Denmark, 1996).

Morrison, G. R.

G. M. Gibson, G. R. Morrison, P. L. Hansen, M. H. Dunn, and M. J. Padgett, Opt. Commun. 136, 423 (1997).
[CrossRef]

Padgett, M. J.

G. M. Gibson, G. R. Morrison, P. L. Hansen, M. H. Dunn, and M. J. Padgett, Opt. Commun. 136, 423 (1997).
[CrossRef]

Serkland, D. K.

Yang, S. T.

S. T. Yang, R. C. Eckardt, and R. L. Byer, J. Opt. Soc. Am. B. 10, 1684 (1993).
[CrossRef]

J. Opt. Soc. Am. B. (1)

S. T. Yang, R. C. Eckardt, and R. L. Byer, J. Opt. Soc. Am. B. 10, 1684 (1993).
[CrossRef]

Opt. Commun. (1)

G. M. Gibson, G. R. Morrison, P. L. Hansen, M. H. Dunn, and M. J. Padgett, Opt. Commun. 136, 423 (1997).
[CrossRef]

Opt. Lett. (1)

Other (1)

P. L. Hansen, “Coherent tunable solid-state light sources,” Ph.D. dissertation (Department of Physics, Technical University of Denmark, Lyngby, Denmark, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Mechanically very stable OPO setup using an lcry=5-mm KTP crystal cut for near-degenerate operation at 1064  nm, high reflecting mirrors at signal and idler RS=99.9%, Rp=50% at the pump wavelength, and an lcav=18-mm hemispherical cavity.

Fig. 2
Fig. 2

Discrete output peaks observed as the OPO cavity is scanned through simultaneous resonance of the signal and idler fields. Scan speed, 15 µm/s. Top, scanning voltage; middle, transmitted pump power; bottom, generated signal and idler power.

Fig. 3
Fig. 3

Measurement of the generated signal and idler power as the cavity is scanned through resonance in the two scanning directions. Scan speed, 15 µm/s. Included are modeled data of both the temperature and the generated field.

Fig. 4
Fig. 4

Measured signal–idler power alternating the cavity length between two steady-state lengths. The change in cavity length corresponds to 1 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=δϕjΔT=δϕjαabslcryδtCm=0NPcir,m1-δtτN-m.

Metrics