Abstract

We used a pair of diamond-turned CaF2 aspheres to convert the pure TEM00 Gaussian spatial profile output of a diode-pumped Nd:YAG laser oscillator into a super-Gaussian intensity profile with a nearly flat phase front. The resulting super-Gaussian beam was nearly diffraction limited with an M2 of 1.75; in the near field the 5-mm diameter beam retained a nominally flat-top intensity distribution without significant diffraction peaks for an excellent working distance of more than 50  cm. A 10% improvement in amplifier-energy extraction obtained by use of the reshaped beam is demonstrated.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Kasinski and R. L. Burnham, Appl. Opt. 35, 5949 (1996).
    [CrossRef] [PubMed]
  2. S. C. Tidwell, J. F. Seamans, and D. D. Lowenthal, Opt. Lett. 18, 116 (1993).
    [CrossRef] [PubMed]
  3. G. Sharp and A. Kathman, in Industrial Laser Review, D. Belforte, ed. (Pennwell, Tulsa, Okla., 1994), p. 13.
  4. D. Killpatrick, in Industrial Laser Review, D. Belforte, ed. (Pennwell, Tulsa, Okla., 1993), p. 18.
  5. J. R. Leger, D. Chen, and Z. Wang, Opt. Lett. 19, 108 (1994).
    [CrossRef]
  6. G. Mowry and J. R. Leger, Appl. Phys. Lett. 66, 1614 (1995).
    [CrossRef]

1996 (1)

1995 (1)

G. Mowry and J. R. Leger, Appl. Phys. Lett. 66, 1614 (1995).
[CrossRef]

1994 (1)

1993 (1)

Burnham, R. L.

Chen, D.

Kasinski, J. J.

Kathman, A.

G. Sharp and A. Kathman, in Industrial Laser Review, D. Belforte, ed. (Pennwell, Tulsa, Okla., 1994), p. 13.

Killpatrick, D.

D. Killpatrick, in Industrial Laser Review, D. Belforte, ed. (Pennwell, Tulsa, Okla., 1993), p. 18.

Leger, J. R.

G. Mowry and J. R. Leger, Appl. Phys. Lett. 66, 1614 (1995).
[CrossRef]

J. R. Leger, D. Chen, and Z. Wang, Opt. Lett. 19, 108 (1994).
[CrossRef]

Lowenthal, D. D.

Mowry, G.

G. Mowry and J. R. Leger, Appl. Phys. Lett. 66, 1614 (1995).
[CrossRef]

Seamans, J. F.

Sharp, G.

G. Sharp and A. Kathman, in Industrial Laser Review, D. Belforte, ed. (Pennwell, Tulsa, Okla., 1994), p. 13.

Tidwell, S. C.

Wang, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Mowry and J. R. Leger, Appl. Phys. Lett. 66, 1614 (1995).
[CrossRef]

Opt. Lett. (2)

Other (2)

G. Sharp and A. Kathman, in Industrial Laser Review, D. Belforte, ed. (Pennwell, Tulsa, Okla., 1994), p. 13.

D. Killpatrick, in Industrial Laser Review, D. Belforte, ed. (Pennwell, Tulsa, Okla., 1993), p. 18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Beam-shaping experimental setup: DPO, diode-pumped Nd:YAG oscillator with 1.06-µm output of 15  mJ at 30  Hz, TEM00 with M2=1.0; T1, magnifying telescope; A1, diamond-turned CaF2 asphere, which causes the intensity profile to become super-Gaussian after propagating 25  cm; A2, CaF2 asphere, which we used to regain a flat phase front; DPA, diode-pumped Nd:YAG amplifier.

Fig. 2
Fig. 2

Profiles of diamond-turned CaF2 aspheres: (A) plate designed to convert a 6.0-mm-diameter Gaussian into a 5.3-mm-diameter super-Gaussian of order 5, (B) plate designed to be placed 25  cm after the first plate for removal of the phase induced by the first plate and subsequent propagation.

Fig. 3
Fig. 3

Intensity profiles of the beam transformation: (A) Gaussian input to the first asphere, (B) super-Gaussian output just after the second asphere, (C) far-field profile. The super-Gaussian beam is nearly diffraction limited, with an M2 of 1.75 and a corresponding θd (collimated beam diameter X full-angle far-field divergence) of 2.38  mm-mrad.

Fig. 4
Fig. 4

Intensity profiles after propagation in the near field: (A) at 24  cm from the second asphere, (B) at 50  cm from the second asphere, (C) at 77  cm from the second asphere. The spatial profile remained a useful super-Gaussian shape without significant diffraction peaks over a large excellent working distance.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ar=A0 exp-2r/r0n,
Δlr=λϕrn-1,

Metrics