Abstract

We present two-beam coupling experiments in the nanosecond regime at 1.06  µm, using photorefractive BaTiO3:Rh. The maximum observed exponential gain coefficient is 14.2 cm-1. No intensity-dependent electron–hole competition and no strong saturation of the photoionized charge carriers are observed for intensities of less than 20  MW  cm-2. The energy required for recording the photorefractive grating is not significantly different in the nanosecond and the cw regimes.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, Opt. Commun. 135, 133 (1997).
    [CrossRef]
  2. B. A. Wechsler, M. B. Klein, C. C. Nelson, and R. N. Schwartz, Opt. Lett. 19, 536 (1994).
    [CrossRef] [PubMed]
  3. K. Buse and E. Krätzig, Appl. Phys. B 61, 27 (1995).
    [CrossRef]
  4. G. C. Valley, IEEE J. Quantum Electron. QE-19, 1637 (1983).
    [CrossRef]
  5. M. J. Damzen and N. Barry, J. Opt. Soc. Am. B 10, 600 (1993).
    [CrossRef]
  6. L. Mager, G. Pauliat, D. Rytz, M. H. Garrett, and G. Roosen, Mol. Cryst. Sci. Technol. B 11, 135 (1995).
  7. A. Brignon, J.-P. Huignard, M. H. Garrett, and I. Mnushkina, Opt. Lett. 22, 215 (1997).
    [CrossRef] [PubMed]

1997

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, Opt. Commun. 135, 133 (1997).
[CrossRef]

A. Brignon, J.-P. Huignard, M. H. Garrett, and I. Mnushkina, Opt. Lett. 22, 215 (1997).
[CrossRef] [PubMed]

1995

K. Buse and E. Krätzig, Appl. Phys. B 61, 27 (1995).
[CrossRef]

L. Mager, G. Pauliat, D. Rytz, M. H. Garrett, and G. Roosen, Mol. Cryst. Sci. Technol. B 11, 135 (1995).

1994

1993

1983

G. C. Valley, IEEE J. Quantum Electron. QE-19, 1637 (1983).
[CrossRef]

Barry, N.

Brignon, A.

Buse, K.

K. Buse and E. Krätzig, Appl. Phys. B 61, 27 (1995).
[CrossRef]

Damzen, M. J.

Garrett, M. H.

A. Brignon, J.-P. Huignard, M. H. Garrett, and I. Mnushkina, Opt. Lett. 22, 215 (1997).
[CrossRef] [PubMed]

L. Mager, G. Pauliat, D. Rytz, M. H. Garrett, and G. Roosen, Mol. Cryst. Sci. Technol. B 11, 135 (1995).

Huignard, J.-P.

Huot, N.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, Opt. Commun. 135, 133 (1997).
[CrossRef]

Jonathan, J. M. C.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, Opt. Commun. 135, 133 (1997).
[CrossRef]

Klein, M. B.

Krätzig, E.

K. Buse and E. Krätzig, Appl. Phys. B 61, 27 (1995).
[CrossRef]

Mager, L.

L. Mager, G. Pauliat, D. Rytz, M. H. Garrett, and G. Roosen, Mol. Cryst. Sci. Technol. B 11, 135 (1995).

Mnushkina, I.

Nelson, C. C.

Pauliat, G.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, Opt. Commun. 135, 133 (1997).
[CrossRef]

L. Mager, G. Pauliat, D. Rytz, M. H. Garrett, and G. Roosen, Mol. Cryst. Sci. Technol. B 11, 135 (1995).

Roosen, G.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, Opt. Commun. 135, 133 (1997).
[CrossRef]

L. Mager, G. Pauliat, D. Rytz, M. H. Garrett, and G. Roosen, Mol. Cryst. Sci. Technol. B 11, 135 (1995).

Rytz, D.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, Opt. Commun. 135, 133 (1997).
[CrossRef]

L. Mager, G. Pauliat, D. Rytz, M. H. Garrett, and G. Roosen, Mol. Cryst. Sci. Technol. B 11, 135 (1995).

Schwartz, R. N.

Valley, G. C.

G. C. Valley, IEEE J. Quantum Electron. QE-19, 1637 (1983).
[CrossRef]

Wechsler, B. A.

Appl. Phys. B

K. Buse and E. Krätzig, Appl. Phys. B 61, 27 (1995).
[CrossRef]

IEEE J. Quantum Electron.

G. C. Valley, IEEE J. Quantum Electron. QE-19, 1637 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Mol. Cryst. Sci. Technol. B

L. Mager, G. Pauliat, D. Rytz, M. H. Garrett, and G. Roosen, Mol. Cryst. Sci. Technol. B 11, 135 (1995).

Opt. Commun.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, and G. Roosen, Opt. Commun. 135, 133 (1997).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup in the counterpropagating geometry: GP’s, Glan polarizers; G’s, glass plates; T’s, light traps; D1, D2, detectors; P, prismatic glass plate.

Fig. 2
Fig. 2

Two-beam coupling exponential gain coefficient measured in the counterpropagating geometry versus intensity (a) with extraordinary polarized beams in 45°-cut Y32 B crystal and (b) with ordinary polarized beams in 0°-cut X14 crystal.

Fig. 3
Fig. 3

Inverse of the cw equivalent time constant (proportional to the photoionized density of holes) versus pulsed intensity for Y32 B crystal. The dotted line is a guide for the eye.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ISt=IS0expΓl1-exp-t/τ,

Metrics