Abstract

We outline a novel method for estimating a fixed aberration that is in the image path but not in the wave-front-sensor (WFS) path of an adaptive optics (AO) imaging system. We accomplish this through a nontraditional application of the Gonsalves [Proc.  SPIE 207, 32 (1997)] least-squares phase-diversity technique, using an ensemble of images and WFS data. The diversity phases required for this technique are provided by the temporal differences in WFS residual phase measurements for different members of the ensemble. We demonstrate the technique by using actual observations from an operational AO system exhibiting such an aberration. An estimate of this aberration was obtained by the proposed algorithm that agrees reasonably well with the observed point-spread function.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Q. Fugate, B. L. Ellerbroek, C. H. Higgins, M. P. Jelonek, W. J. Lange, A. C. Slavin, W. J. Wild, and D. M. Winker, J. Opt. Soc. Am. A 11, 310 (1994).
    [CrossRef]
  2. M. C. Roggemann and B. M. Welsh, Imaging through Turbulence (CRC, Boca Raton, Fla., 1996).
  3. R. A. Gonsalves and R. Chidlaw, Proc. SPIE 207, 32 (1979).
    [CrossRef]
  4. R. G. Paxman, T. J. Schulz, and J. R. Fienup, J. Opt. Soc. Am. A 9, 1072 (1992).
    [CrossRef]
  5. R. J. Noll, J. Opt. Soc. Am. 66, 207 (1976).
    [CrossRef]
  6. M. G. Lofdahl and G. B. Scharmer, Astron. Astrophys. Suppl. Ser. 107, 243 (1994).
  7. M. C. Roggemann and J. A. Meinhardt, J. Opt. Soc. Am. 10, 1996 (1993).
    [CrossRef]
  8. D. Hoffleit and C. Jaschek, The Bright Star Catalogue, 4th rev. ed. (Yale University Observatory, New Haven, Conn., 1982).
  9. I. J. D. Craig and J. C. Brown, Inverse Problems in Astronomy: A Guide to Inversion Strategies for Remotely Sensed Data (Hilger, Bristol, UK, 1986).
  10. A. Grace, Optimization Toolbox for use with MATLAB (MathWorks, Natick, Mass., 1992).

1994 (2)

1993 (1)

M. C. Roggemann and J. A. Meinhardt, J. Opt. Soc. Am. 10, 1996 (1993).
[CrossRef]

1992 (1)

1979 (1)

R. A. Gonsalves and R. Chidlaw, Proc. SPIE 207, 32 (1979).
[CrossRef]

1976 (1)

Brown, J. C.

I. J. D. Craig and J. C. Brown, Inverse Problems in Astronomy: A Guide to Inversion Strategies for Remotely Sensed Data (Hilger, Bristol, UK, 1986).

Chidlaw, R.

R. A. Gonsalves and R. Chidlaw, Proc. SPIE 207, 32 (1979).
[CrossRef]

Craig, I. J. D.

I. J. D. Craig and J. C. Brown, Inverse Problems in Astronomy: A Guide to Inversion Strategies for Remotely Sensed Data (Hilger, Bristol, UK, 1986).

Ellerbroek, B. L.

Fienup, J. R.

Fugate, R. Q.

Gonsalves, R. A.

R. A. Gonsalves and R. Chidlaw, Proc. SPIE 207, 32 (1979).
[CrossRef]

Grace, A.

A. Grace, Optimization Toolbox for use with MATLAB (MathWorks, Natick, Mass., 1992).

Higgins, C. H.

Hoffleit, D.

D. Hoffleit and C. Jaschek, The Bright Star Catalogue, 4th rev. ed. (Yale University Observatory, New Haven, Conn., 1982).

Jaschek, C.

D. Hoffleit and C. Jaschek, The Bright Star Catalogue, 4th rev. ed. (Yale University Observatory, New Haven, Conn., 1982).

Jelonek, M. P.

Lange, W. J.

Lofdahl, M. G.

M. G. Lofdahl and G. B. Scharmer, Astron. Astrophys. Suppl. Ser. 107, 243 (1994).

Meinhardt, J. A.

M. C. Roggemann and J. A. Meinhardt, J. Opt. Soc. Am. 10, 1996 (1993).
[CrossRef]

Noll, R. J.

Paxman, R. G.

Roggemann, M. C.

M. C. Roggemann and J. A. Meinhardt, J. Opt. Soc. Am. 10, 1996 (1993).
[CrossRef]

M. C. Roggemann and B. M. Welsh, Imaging through Turbulence (CRC, Boca Raton, Fla., 1996).

Scharmer, G. B.

M. G. Lofdahl and G. B. Scharmer, Astron. Astrophys. Suppl. Ser. 107, 243 (1994).

Schulz, T. J.

Slavin, A. C.

Welsh, B. M.

M. C. Roggemann and B. M. Welsh, Imaging through Turbulence (CRC, Boca Raton, Fla., 1996).

Wild, W. J.

Winker, D. M.

Astron. Astrophys. Suppl. Ser. (1)

M. G. Lofdahl and G. B. Scharmer, Astron. Astrophys. Suppl. Ser. 107, 243 (1994).

J. Opt. Soc. Am. (2)

M. C. Roggemann and J. A. Meinhardt, J. Opt. Soc. Am. 10, 1996 (1993).
[CrossRef]

R. J. Noll, J. Opt. Soc. Am. 66, 207 (1976).
[CrossRef]

J. Opt. Soc. Am. A (2)

Proc. SPIE (1)

R. A. Gonsalves and R. Chidlaw, Proc. SPIE 207, 32 (1979).
[CrossRef]

Other (4)

M. C. Roggemann and B. M. Welsh, Imaging through Turbulence (CRC, Boca Raton, Fla., 1996).

D. Hoffleit and C. Jaschek, The Bright Star Catalogue, 4th rev. ed. (Yale University Observatory, New Haven, Conn., 1982).

I. J. D. Craig and J. C. Brown, Inverse Problems in Astronomy: A Guide to Inversion Strategies for Remotely Sensed Data (Hilger, Bristol, UK, 1986).

A. Grace, Optimization Toolbox for use with MATLAB (MathWorks, Natick, Mass., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simplified block diagram of an AO imaging system, depicting an aberration that is present in the optical path that the imaging camera does not share with the WFS. DM, deformable mirror.

Fig. 2
Fig. 2

Schematic for using phase diversity to diagnose an AO image aberration that is not present in the WFS optics path by relying only on the differences in WFS measurements. The differences are due to the dynamic action of the atmosphere-adaptive optics system.

Fig. 3
Fig. 3

(a) Example average star image frame and (b) its corresponding original Hartmann WFS-based average PSF estimate, showing how the Hartmann sensor is not detecting the unknown aberration. Images shown are 50-element ensemble averages. The central 21-pixel squares are shown in negative, with contour lines overlaid for clarity.

Fig. 4
Fig. 4

Phase-diversity-augmented WFS-based average PSF estimate, as discussed in the text. A phase-diversity estimate has been added to every WFS frame before creation of the average PSF estimate. Again, the central 21 pixel squares are shown in negative, with contour lines.

Tables (1)

Tables Icon

Table 1 Noll-Modified Zernike Coefficients of the Diagnosed Image-Path Aberration Phase Screen

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dnx; αn=d1x; α+Δ1, d2x; α+Δ2,,dNx; α+ΔN,
αunknown=αPD-αHartmann,

Metrics