Abstract

We have designed, microfabricated, and characterized a diffractive optical element that reproduces the infrared spectrum of HF from 3600 to 4300  cm-1. The reflection-mode diffractive optic consists of 4096 lines, each 4.5 µm wide, at 16 discrete depths relative to the substrate from 0 to 1.2 µm and was fabricated upon a silicon wafer by anisotropic reactive ion-beam etching in a four-mask-level process. We envisage the use of diffractive optical elements of this type as the basis for a new class of miniaturized, remote chemical sensor systems based on correlation spectroscopy.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Moharam, T. K. Gaylord, and J. R. Leger, eds., feature on diffractive optics modeling, J. Opt. Soc. Am. A 12, 1026–1169 (1995).
    [CrossRef]
  2. J. R. Leger, T. K. Gaylord, and M. G. Moharam, eds., feature on diffractive optics, Appl. Opt. 34, 2399–2559 (1995).
    [CrossRef] [PubMed]
  3. M. B. Sinclair, M. A. Butler, A. J. Ricco, and S. D. Senturia, Appl. Opt. 36, 3342 (1997).
    [CrossRef] [PubMed]
  4. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 4, pp. 57–74.
  5. R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).
  6. D. W. Prather, M. S. Mirotznik, and J. N. Mait, Proc. SPIE 2689, 14 (1996).
    [CrossRef]
  7. G. A. Vawter and J. R. Wendt, Appl. Phys. Lett. 58, 289 (1991).
    [CrossRef]
  8. The infrared spectrum of HF was obtained from Infrared Analysis, Inc., 1334 North Knollwood Circle, Anaheim, Calif. 92801.
  9. R. Goody, J. Opt. Soc. Am. A 58, 900 (1968).
    [CrossRef]
  10. H. O. Edwards and J. P. Daikin, Sensors Actuators B 11, 9 (1993).
    [CrossRef]

1997 (1)

1996 (1)

D. W. Prather, M. S. Mirotznik, and J. N. Mait, Proc. SPIE 2689, 14 (1996).
[CrossRef]

1995 (2)

1993 (1)

H. O. Edwards and J. P. Daikin, Sensors Actuators B 11, 9 (1993).
[CrossRef]

1991 (1)

G. A. Vawter and J. R. Wendt, Appl. Phys. Lett. 58, 289 (1991).
[CrossRef]

1972 (1)

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

1968 (1)

R. Goody, J. Opt. Soc. Am. A 58, 900 (1968).
[CrossRef]

Butler, M. A.

Daikin, J. P.

H. O. Edwards and J. P. Daikin, Sensors Actuators B 11, 9 (1993).
[CrossRef]

Edwards, H. O.

H. O. Edwards and J. P. Daikin, Sensors Actuators B 11, 9 (1993).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 4, pp. 57–74.

Goody, R.

R. Goody, J. Opt. Soc. Am. A 58, 900 (1968).
[CrossRef]

Mait, J. N.

D. W. Prather, M. S. Mirotznik, and J. N. Mait, Proc. SPIE 2689, 14 (1996).
[CrossRef]

Mirotznik, M. S.

D. W. Prather, M. S. Mirotznik, and J. N. Mait, Proc. SPIE 2689, 14 (1996).
[CrossRef]

Prather, D. W.

D. W. Prather, M. S. Mirotznik, and J. N. Mait, Proc. SPIE 2689, 14 (1996).
[CrossRef]

Ricco, A. J.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Senturia, S. D.

Sinclair, M. B.

Vawter, G. A.

G. A. Vawter and J. R. Wendt, Appl. Phys. Lett. 58, 289 (1991).
[CrossRef]

Wendt, J. R.

G. A. Vawter and J. R. Wendt, Appl. Phys. Lett. 58, 289 (1991).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. A. Vawter and J. R. Wendt, Appl. Phys. Lett. 58, 289 (1991).
[CrossRef]

J. Opt. Soc. Am. A (2)

Optik (1)

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Proc. SPIE (1)

D. W. Prather, M. S. Mirotznik, and J. N. Mait, Proc. SPIE 2689, 14 (1996).
[CrossRef]

Sensors Actuators B (1)

H. O. Edwards and J. P. Daikin, Sensors Actuators B 11, 9 (1993).
[CrossRef]

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 4, pp. 57–74.

The infrared spectrum of HF was obtained from Infrared Analysis, Inc., 1334 North Knollwood Circle, Anaheim, Calif. 92801.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scanning electron micrograph of a portion of the diffractive optical element designed to synthesize the HF spectrum.

Fig. 2
Fig. 2

Diagram of the experimental apparatus used to record the diffraction efficiency spectrum of the diffractive optical element.

Fig. 3
Fig. 3

(a) IR spectrum of HF from 3600 to 4250  cm-1. (b) Theoretical synthetic spectrum predicted by the design algorithm. (c) IR spectrum measured for the diffractive element shown in Fig.  1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

u=sinθ/λ,
ϕλx=4π/λdx,

Metrics