Abstract

We report on experimental studies of external-feedback effects on high-gain scattering media. We explain experimental results for the pump energy required for laser action as a function of the separation between a mirror and the media by use of Monte Carlo simulations and integration of the laser equations.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, in Progress in Quantum Electronics, J. H. Sanders and K. W. H. Stevens, eds. (Pergamon, Oxford, 1970), pp. 109–185.
  2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
    [Crossref]
  3. R. M. Balachandran and N. M. Lawandy, Opt. Lett. 20, 1271 (1995).
    [Crossref] [PubMed]
  4. J. Martorell, R. M. Balachandran, and N. M. Lawandy, Opt. Lett. 21, 239 (1996).
    [Crossref] [PubMed]
  5. A. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
    [Crossref]
  6. S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
    [Crossref] [PubMed]
  7. S. C. Hill and R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.
  8. R. M. Balachandran, N. M. Lawandy, and J. A. Moon, Opt. Lett. 22, 319 (1997).
    [Crossref] [PubMed]
  9. P. C. de Oliveira, J. A. McGreevy, and N. M. Lawandy, Opt. Lett. 22, 700 (1997).
    [Crossref] [PubMed]
  10. R. M. Balachandran, A. E. Perkins, and N. M. Lawandy, Opt. Lett. 21, 650 (1997).
    [Crossref]
  11. R. M. Balachandran and N. M. Lawandy, Opt. Lett. 21, 1603 (1996).
    [Crossref] [PubMed]
  12. E. D. Cashwell and C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).
  13. A. N. Witt, Astron. J. Supp. Ser. 35, 1 (1977).
    [Crossref]

1997 (3)

1996 (2)

1995 (1)

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
[Crossref]

1993 (1)

A. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[Crossref]

1986 (1)

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[Crossref] [PubMed]

1977 (1)

A. N. Witt, Astron. J. Supp. Ser. 35, 1 (1977).
[Crossref]

Allik, T. H.

A. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[Crossref]

Ambartsumyan, R. V.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, in Progress in Quantum Electronics, J. H. Sanders and K. W. H. Stevens, eds. (Pergamon, Oxford, 1970), pp. 109–185.

Balachandran, R. M.

Basov, N. G.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, in Progress in Quantum Electronics, J. H. Sanders and K. W. H. Stevens, eds. (Pergamon, Oxford, 1970), pp. 109–185.

Benner, R. E.

S. C. Hill and R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

Cashwell, E. D.

E. D. Cashwell and C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).

Chandra, S.

A. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[Crossref]

Chang, R. K.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[Crossref] [PubMed]

de Oliveira, P. C.

Everett, C. J.

E. D. Cashwell and C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
[Crossref]

Hermes, A. E.

A. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[Crossref]

Hill, S. C.

S. C. Hill and R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

Hutchinson, J. A.

A. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[Crossref]

Kryukov, P. G.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, in Progress in Quantum Electronics, J. H. Sanders and K. W. H. Stevens, eds. (Pergamon, Oxford, 1970), pp. 109–185.

Lawandy, N. M.

Letokhov, V. S.

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, in Progress in Quantum Electronics, J. H. Sanders and K. W. H. Stevens, eds. (Pergamon, Oxford, 1970), pp. 109–185.

Martorell, J.

McGreevy, J. A.

Moon, J. A.

Perkins, A. E.

Qian, S.-X.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[Crossref] [PubMed]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
[Crossref]

Snow, J. B.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[Crossref] [PubMed]

Tzeng, H.-M.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[Crossref] [PubMed]

Witt, A. N.

A. N. Witt, Astron. J. Supp. Ser. 35, 1 (1977).
[Crossref]

Appl. Phys. Lett. (1)

A. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[Crossref]

Astron. J. Supp. Ser. (1)

A. N. Witt, Astron. J. Supp. Ser. 35, 1 (1977).
[Crossref]

Nature (London) (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature (London) 368, 436 (1994).
[Crossref]

Opt. Lett. (6)

Science (1)

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[Crossref] [PubMed]

Other (3)

S. C. Hill and R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

E. D. Cashwell and C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).

R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, in Progress in Quantum Electronics, J. H. Sanders and K. W. H. Stevens, eds. (Pergamon, Oxford, 1970), pp. 109–185.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental geometry used to study the input–output characteristic of the system. The dichroic mirror transmits 90% of the pump beam (at 532 nm) and reflects more than 99% of emitted light (at 650 nm). Part of the emitted light is collected by a fiber bundle and sent to an optical multichannel analyzer (OMA).

Fig. 2
Fig. 2

Spectral line shapes for three different conditions of the laser–mirror system. Without a feedback mirror and for a pump energy of 5.5 mJ/cm2 the emission has a broad spectrum and a low peak intensity. For the same pump energy, but with the mirror on the sample face, the linewidth is approximately three times narrower and the spectral peak intensity is approximately five times higher.

Fig. 3
Fig. 3

Input–output characteristic curves of the laser emission. (a) Output peak intensity of the spectral emission as a function of the input energy fluence for three mirror positions; (b) the respective linewidths. The solid curves are results from numerical integrations of the laser equations for each situation.

Fig. 4
Fig. 4

(a) Pictorial representation of the scattering gain medium V1 and the surrounding unpumped–pumped volume V2. (b) Modifications introduced by mirror M in the calculation of the probability of return of a photon escaping from the front face of the sample.

Metrics