Abstract

A novel technique is demonstrated for heterodyne optical phase locking of a diode laser to a single-frequency source by injection seeding. By modulation of the drive current of the diode laser at as much as several gigahertz, FM sidebands are imposed upon the output. We demonstrate that it is possible to phase lock either sideband to an injected beam. The carrier of the diode laser output is therefore locked in phase with the injected light but with a frequency difference given by the modulation of the drive current. The phase fluctuations between the lasers are analyzed, and the variance is found to be 4.4°2, corresponding to 99.4% of the diode carrier light locked to the injected beam.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
    [CrossRef]
  2. G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, Opt. Commun. 104, 339 (1994).
    [CrossRef]
  3. C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, Opt. Commun. 132, 94 (1996).
    [CrossRef]
  4. S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
    [CrossRef]
  5. S. Q. Shang and H. J. Metcalf, Appl. Opt. 28, 1618 (1989).
    [CrossRef] [PubMed]
  6. M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
    [CrossRef] [PubMed]
  7. C.-H. Shin and M. Ohtsu, IEEE Photon. Technol. Lett. 2, 297 (1990).
    [CrossRef]
  8. P. Bouyer, T. L. Gustavson, K. G. Haritos, and M. A. Kasevich, Opt. Lett. 21, 1502 (1996).
    [CrossRef] [PubMed]
  9. L. Goldberg, H. F. Taylor, and J. F. Weller, Electron. Lett. 18, 1019 (1982).
    [CrossRef]
  10. C. J. Myatt, N. R. Newbury, and C. E. Wieman, Opt. Lett. 18, 649 (1993).
    [CrossRef]
  11. D. W. Allan, Proc. IEEE 54, 221 (1966).
    [CrossRef]
  12. R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983).
  13. C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer-Verlag, Berlin, 1985).

1996 (2)

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, Opt. Commun. 132, 94 (1996).
[CrossRef]

P. Bouyer, T. L. Gustavson, K. G. Haritos, and M. A. Kasevich, Opt. Lett. 21, 1502 (1996).
[CrossRef] [PubMed]

1994 (1)

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

1993 (1)

1991 (2)

C. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

1990 (1)

C.-H. Shin and M. Ohtsu, IEEE Photon. Technol. Lett. 2, 297 (1990).
[CrossRef]

1989 (1)

1982 (1)

L. Goldberg, H. F. Taylor, and J. F. Weller, Electron. Lett. 18, 1019 (1982).
[CrossRef]

1981 (1)

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

1966 (1)

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Allan, D. W.

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Barwood, G. P.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, Opt. Commun. 132, 94 (1996).
[CrossRef]

Bouyer, P.

Chu, S.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

Clairon, A.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

Edwards, C. S.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, Opt. Commun. 132, 94 (1996).
[CrossRef]

Gardiner, C. W.

C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer-Verlag, Berlin, 1985).

Gill, P.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, Opt. Commun. 132, 94 (1996).
[CrossRef]

Goldberg, L.

L. Goldberg, H. F. Taylor, and J. F. Weller, Electron. Lett. 18, 1019 (1982).
[CrossRef]

Gustavson, T. L.

Haritos, K. G.

Hollberg, L.

C. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Kasapi, S.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

Kasevich, M.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

Kasevich, M. A.

Kimura, T.

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Kobayashi, S.

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Lea, S. N.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

Loudon, R.

R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983).

Metcalf, H. J.

Moler, K.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

Myatt, C. J.

Newbury, N. R.

Ohtsu, M.

C.-H. Shin and M. Ohtsu, IEEE Photon. Technol. Lett. 2, 297 (1990).
[CrossRef]

Riis, E.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

Rodríguez-Llorente, F.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, Opt. Commun. 132, 94 (1996).
[CrossRef]

Rowley, W. R. C.

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, Opt. Commun. 132, 94 (1996).
[CrossRef]

Santarelli, G.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

Shang, S. Q.

Shin, C.-H.

C.-H. Shin and M. Ohtsu, IEEE Photon. Technol. Lett. 2, 297 (1990).
[CrossRef]

Taylor, H. F.

L. Goldberg, H. F. Taylor, and J. F. Weller, Electron. Lett. 18, 1019 (1982).
[CrossRef]

Tino, G. M.

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

Weiss, D. S.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

Weller, J. F.

L. Goldberg, H. F. Taylor, and J. F. Weller, Electron. Lett. 18, 1019 (1982).
[CrossRef]

Wieman, C.

C. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Wieman, C. E.

Appl. Opt. (1)

Electron. Lett. (1)

L. Goldberg, H. F. Taylor, and J. F. Weller, Electron. Lett. 18, 1019 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C.-H. Shin and M. Ohtsu, IEEE Photon. Technol. Lett. 2, 297 (1990).
[CrossRef]

Opt. Commun. (2)

G. Santarelli, A. Clairon, S. N. Lea, and G. M. Tino, Opt. Commun. 104, 339 (1994).
[CrossRef]

C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, Opt. Commun. 132, 94 (1996).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, Phys. Rev. Lett. 66, 2297 (1991).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Rev. Sci. Instrum. (1)

C. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Other (2)

R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983).

C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer-Verlag, Berlin, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: A diode laser is driven by a dc current, IB, and is modulated at frequency ω0. This results in an output spectrum consisting of a carrier and sidebands at ±ω0. A weak beam [attenuated by a neutral-density filter (ND)] from a single-frequency Ti:sapphire laser is injected into the diode. If the operating conditions of the diode are chosen such that the Ti:sapphire frequency is close to a sideband frequency the diode phase locks to the injected beam. This is observed with a scanning Fabry–Perot interferometer (FP) as a narrowing of the optical spectrum and is analyzed by detection of the beat note between the two lasers. The beat note is amplified (A), mixed with a frequency ωR in a double-balanced mixer (DBM), and filtered (F) before it is monitored on an oscilloscope (OSC). The Ti:sapphire light used for this heterodyne detection is shifted by a frequency Δω with an acousto-optic modulator (AOM).

Fig. 2
Fig. 2

Spectrum of the diode laser under phase-locking conditions observed with a 300-MHz scanning confocal Fabry–Perot resonator. The diode is modulated at a frequency of 2.825 GHz, and the lower sideband is locked to the Ti:sapphire master laser. It was generally observed that the injected sideband was slightly larger than the other one. This presumably is due to amplification of the injected beam. Under free-running conditions the power in each sideband was of the order of 3%. FSR, free spectral range.

Fig. 3
Fig. 3

From measurements of the phase fluctuations as a function of time it is possible to determine the Allan variance of the beat frequency between the two lasers. The straight line has a slope of -2. The inset shows a different representation of the data. The derived spectrum of the beat note (given by the Fourier transform of the autocovariance function) is virtually indistinguishable from the Fourier limit set by the finite observation time.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ2τ=1τ2ϕt+τ-ϕt2t.
SEf=12π-g1τexp2πifτdτ,
g1τ=limT1T0Texpiδωτ+ϕt+τ-ϕtdt.
g1τ=exp-12ϕt+τ-ϕt2t.
g1ττexp-ϕt2t.

Metrics