Abstract

Nonlinear pulse propagation in long-period fiber gratings is studied with a mode-locked Q-switched laser pulse approximately 80  ps in duration at a wavelength of 1.05  µm. Optical switching, pulse reshaping, and optical limiting are found at intensities in the range of 1–20  GW/cm2.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Jensen, IEEE J. Quantum Electron. QE-18, 1580 (1982).
    [CrossRef]
  2. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
    [CrossRef] [PubMed]
  3. B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, Electron. Lett. 32, 2341 (1996).
    [CrossRef]
  4. S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
    [CrossRef]
  5. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  6. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 75, 73 (1994).
    [CrossRef]
  7. W. V. Sorin, B. Y. Com, and H. J. Shaw, Opt. Lett. 11, 581 (1986).
    [CrossRef] [PubMed]

1996

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, Electron. Lett. 32, 2341 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

1994

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 75, 73 (1994).
[CrossRef]

1990

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
[CrossRef]

1986

1982

S. M. Jensen, IEEE J. Quantum Electron. QE-18, 1580 (1982).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Com, B. Y.

de Sterke, C. M.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, Electron. Lett. 32, 2341 (1996).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, Electron. Lett. 32, 2341 (1996).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 75, 73 (1994).
[CrossRef]

Hibino, Y.

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
[CrossRef]

Jensen, S. M.

S. M. Jensen, IEEE J. Quantum Electron. QE-18, 1580 (1982).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

La Rochelle, S.

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 75, 73 (1994).
[CrossRef]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 75, 73 (1994).
[CrossRef]

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 75, 73 (1994).
[CrossRef]

Shaw, H. J.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, Electron. Lett. 32, 2341 (1996).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Slusher, R. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, Electron. Lett. 32, 2341 (1996).
[CrossRef]

Sorin, W. V.

Stegeman, G. I.

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Electron. Lett.

B. J. Eggleton, C. M. de Sterke, R. E. Slusher, and J. E. Sipe, Electron. Lett. 32, 2341 (1996).
[CrossRef]

S. La Rochelle, Y. Hibino, V. Mizrahi, and G. I. Stegeman, Electron. Lett. 26, 1459 (1990).
[CrossRef]

IEEE J. Quantum Electron.

S. M. Jensen, IEEE J. Quantum Electron. QE-18, 1580 (1982).
[CrossRef]

J. Appl. Phys.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 75, 73 (1994).
[CrossRef]

J. Lightwave Technol.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Part of the transmission spectrum of the long-period grating used in the nonlinear-propagation experiments. The bottom axis (solid curve) represents wavelength as measured by use of a broadband source and a spectrum analyzer. The top axis (filled circles) represents the transmission through the long-period grating as measured by the pulsed laser energy output (low input intensities) in the core of the fiber as a function of the fiber temperature.

Fig. 2
Fig. 2

Experimental schematic diagram.

Fig. 3
Fig. 3

(a) Transmission through a long-period grating for pulse energies form 1 to 20 GW/cm2 at a temperature of 106 °C. (b) Pulse shapes for 1-GW/cm2 (dashed curve) and 20-GW/cm2 (solid curve) pulses transmitted through the long-period grating at a temperature of 160 °C. The pulse amplitudes are normalized to be equal at the peaks.

Fig. 4
Fig. 4

(a) Transmission through a long-period grating for pulse energies from 1 to 20 GW/cm2 at a temperature of 40 °C. (b) Pulse shapes for 1-GW/cm2 (dashed curve) and 20-GW/cm2 (solid curve) pulses transmitted through the long-period grating at a temperature of 40 °C. The pulse amplitudes are normalized to be equal at the peaks.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λm=dn01-nm,
Δλw=0.4λm2/LΔng,
n=n0+n2I,
Δλs=n2I/Δng.

Metrics