Abstract

The efficiency of an ion-etched laminar holographic grating was measured at near-normal incidence in the 14.5–16.0-nm wavelength range. The grating had an electron-beam-evaporated Mo/Si multilayer coating matched to the grating groove depth. The efficiency peaked at 16.3% in the first inside order at 15.12  nm and 15.0% in the first outside order at 14.94  nm. These are believed to be the highest efficiencies obtained to date from a multilayer-coated laminar grating at near-normal incidence in the EUV λ<30.0 nm. Zero and even orders were almost completely suppressed. The grating groove efficiency in the first order approached the theoretical limit of 40.5%.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription