Abstract

Flow visualization and particle image velocimetry of deep volumes are achieved by holographic recordings. Light-in-flight holography is applied to avoid noise from out-of-focus regions during interrogation of the reconstructed image by use of a ruby laser source of small coherence. The scheme permits reconstruction of thin layers in depth without disturbance by the rest of the field. The location of the layers is selected by the position of a reconstructing slit aperture on the hologram. Applications to tracer particles in water and visualization by smoke of an air flow are given.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Merzkirch, Flow Visualization (Academic, Orlando, Fla., 1987).
  2. R. J. Adrian, Annu. Rev. Fluid Mech. 23, 261 (1991); K. D. Hinsch, in Speckle Metrology, R. S. Sirohi, ed. (Dekker, New York, 1993), pp. 235–324.
    [CrossRef]
  3. E. P. Rood ed., Holographic Particle Image Velocimetry, ASME, Vol. 148 of the Proceedings of the Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993); D. H. Barnhart, R. J. Adrian, and G. C. Papen, Appl. Opt. 33, 7159 (1994); K. D. Hinsch, Meas. Sci. Technol. 6, 742 (1995).
    [CrossRef] [PubMed]
  4. H. Hinrichs and K. D. Hinsch, in Developments in Laser Techniques and Applications to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, and J. Whitelaw, eds. (Springer-Verlag, Berlin, 1996), pp. 408–422.
    [CrossRef]
  5. N. Abramson, Opt. Lett. 3, 121 (1978); Appl. Opt. 30, 1242 (1991); J. Pomarico, U. Schnars, H.-J. Hartmann, and W. Jüptner, Appl. Opt. 34, 8095 (1995).
    [CrossRef] [PubMed]

1991 (1)

R. J. Adrian, Annu. Rev. Fluid Mech. 23, 261 (1991); K. D. Hinsch, in Speckle Metrology, R. S. Sirohi, ed. (Dekker, New York, 1993), pp. 235–324.
[CrossRef]

1978 (1)

Abramson, N.

Adrian, R. J.

R. J. Adrian, Annu. Rev. Fluid Mech. 23, 261 (1991); K. D. Hinsch, in Speckle Metrology, R. S. Sirohi, ed. (Dekker, New York, 1993), pp. 235–324.
[CrossRef]

Hinrichs, H.

H. Hinrichs and K. D. Hinsch, in Developments in Laser Techniques and Applications to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, and J. Whitelaw, eds. (Springer-Verlag, Berlin, 1996), pp. 408–422.
[CrossRef]

Hinsch, K. D.

H. Hinrichs and K. D. Hinsch, in Developments in Laser Techniques and Applications to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, and J. Whitelaw, eds. (Springer-Verlag, Berlin, 1996), pp. 408–422.
[CrossRef]

Merzkirch, W.

W. Merzkirch, Flow Visualization (Academic, Orlando, Fla., 1987).

Annu. Rev. Fluid Mech. (1)

R. J. Adrian, Annu. Rev. Fluid Mech. 23, 261 (1991); K. D. Hinsch, in Speckle Metrology, R. S. Sirohi, ed. (Dekker, New York, 1993), pp. 235–324.
[CrossRef]

Opt. Lett. (1)

Other (3)

W. Merzkirch, Flow Visualization (Academic, Orlando, Fla., 1987).

E. P. Rood ed., Holographic Particle Image Velocimetry, ASME, Vol. 148 of the Proceedings of the Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993); D. H. Barnhart, R. J. Adrian, and G. C. Papen, Appl. Opt. 33, 7159 (1994); K. D. Hinsch, Meas. Sci. Technol. 6, 742 (1995).
[CrossRef] [PubMed]

H. Hinrichs and K. D. Hinsch, in Developments in Laser Techniques and Applications to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, and J. Whitelaw, eds. (Springer-Verlag, Berlin, 1996), pp. 408–422.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principal setup for recording and reconstruction of particle images by light-in-flight holography (top view).

Fig. 2
Fig. 2

Measurement of coherence depth in a setup for light-in-flight holography (top view). The photos at the left show the ruler bar as seen through the indicated apertures on the hologram.

Fig. 3
Fig. 3

Correlation coefficient between video recordings of the same 3 mm×3 mm area in the particle field. The image with a reconstructing aperture slit of 10-mm width at position zero is correlated with the image from the indicated position.

Fig. 4
Fig. 4

Successive 65 mm×65 mm cuts in depth through a smoke plume show hidden parts of the whole structure that could not be shown by ordinary visualization (separation in depth between images, 7  mm).

Metrics