Abstract

An extremely short external cavity that is realized when a Fabry–Perot laser diode is butt coupled to a waveguide or a fiber produces feedback that is effective for controlled wavelength tuning. We used butt coupling to tune a high-output-power laser diode over a wide range (as great as 15  nm) while maintaining constant driving current and temperature. Single-mode or multimode operation repeatedly occurred at specific points throughout the tuning range. An analytical model that includes the effect of multiple reflections from the external cavity, each attenuated by a modal overlap integral, and which is based on phenomenological principles, shows good agreement with the experimental results.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Osmundsen and N. Gade, IEEE J. Quantum Electron. QE-19, 465 (1983).
    [CrossRef]
  2. P. Zorabedian and W. R. Trutna, Opt. Lett. 13, 826 (1988).
    [CrossRef] [PubMed]
  3. R. W. Tkach and A. R. Chaplyvy, IEEE J. Quantum Electron. QE-17, 1320 (1986).
  4. H. Ukita, Y. Uenishi, and Y. Katagiri, Appl. Opt. 33, 5557 (1994).
    [CrossRef] [PubMed]
  5. X. Zhu and D. T. Cassidy, Proc. SPIE 3000, 138 (1997).
    [CrossRef]
  6. P. A. Ruprecht and J. R. Branderberg, Opt. Commun. 93, 82 (1992).
    [CrossRef]
  7. D. T. Cassidy, D. M. Bruce, and B. F. Ventrudo, Rev. Sci. Instrum. 62, 2385 (1991).
    [CrossRef]
  8. Y. Sidorin and D. Howe, “Diode laser to waveguide butt coupling: extremely short external cavity,” Appl. Opt. (to be published) .
  9. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993), Chap. 2.
  10. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, Orlando, Fla., 1991).
  11. C. Kittel, Introduction to Solid-State Physics, 6th ed. (Wiley, New York, 1986), p. 130.
  12. R. Binder, University of Arizona, Tucson, Ariz. 85721 (personal communication).

1997 (1)

X. Zhu and D. T. Cassidy, Proc. SPIE 3000, 138 (1997).
[CrossRef]

1994 (1)

1992 (1)

P. A. Ruprecht and J. R. Branderberg, Opt. Commun. 93, 82 (1992).
[CrossRef]

1991 (1)

D. T. Cassidy, D. M. Bruce, and B. F. Ventrudo, Rev. Sci. Instrum. 62, 2385 (1991).
[CrossRef]

1988 (1)

1986 (1)

R. W. Tkach and A. R. Chaplyvy, IEEE J. Quantum Electron. QE-17, 1320 (1986).

1983 (1)

J. H. Osmundsen and N. Gade, IEEE J. Quantum Electron. QE-19, 465 (1983).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993), Chap. 2.

Binder, R.

R. Binder, University of Arizona, Tucson, Ariz. 85721 (personal communication).

Branderberg, J. R.

P. A. Ruprecht and J. R. Branderberg, Opt. Commun. 93, 82 (1992).
[CrossRef]

Bruce, D. M.

D. T. Cassidy, D. M. Bruce, and B. F. Ventrudo, Rev. Sci. Instrum. 62, 2385 (1991).
[CrossRef]

Cassidy, D. T.

X. Zhu and D. T. Cassidy, Proc. SPIE 3000, 138 (1997).
[CrossRef]

D. T. Cassidy, D. M. Bruce, and B. F. Ventrudo, Rev. Sci. Instrum. 62, 2385 (1991).
[CrossRef]

Chaplyvy, A. R.

R. W. Tkach and A. R. Chaplyvy, IEEE J. Quantum Electron. QE-17, 1320 (1986).

Dutta, N. K.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993), Chap. 2.

Gade, N.

J. H. Osmundsen and N. Gade, IEEE J. Quantum Electron. QE-19, 465 (1983).
[CrossRef]

Howe, D.

Y. Sidorin and D. Howe, “Diode laser to waveguide butt coupling: extremely short external cavity,” Appl. Opt. (to be published) .

Katagiri, Y.

Kittel, C.

C. Kittel, Introduction to Solid-State Physics, 6th ed. (Wiley, New York, 1986), p. 130.

Osmundsen, J. H.

J. H. Osmundsen and N. Gade, IEEE J. Quantum Electron. QE-19, 465 (1983).
[CrossRef]

Ruprecht, P. A.

P. A. Ruprecht and J. R. Branderberg, Opt. Commun. 93, 82 (1992).
[CrossRef]

Sidorin, Y.

Y. Sidorin and D. Howe, “Diode laser to waveguide butt coupling: extremely short external cavity,” Appl. Opt. (to be published) .

Tkach, R. W.

R. W. Tkach and A. R. Chaplyvy, IEEE J. Quantum Electron. QE-17, 1320 (1986).

Trutna, W. R.

Uenishi, Y.

Ukita, H.

Ventrudo, B. F.

D. T. Cassidy, D. M. Bruce, and B. F. Ventrudo, Rev. Sci. Instrum. 62, 2385 (1991).
[CrossRef]

Zhu, X.

X. Zhu and D. T. Cassidy, Proc. SPIE 3000, 138 (1997).
[CrossRef]

Zorabedian, P.

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

J. H. Osmundsen and N. Gade, IEEE J. Quantum Electron. QE-19, 465 (1983).
[CrossRef]

R. W. Tkach and A. R. Chaplyvy, IEEE J. Quantum Electron. QE-17, 1320 (1986).

Opt. Commun. (1)

P. A. Ruprecht and J. R. Branderberg, Opt. Commun. 93, 82 (1992).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

X. Zhu and D. T. Cassidy, Proc. SPIE 3000, 138 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

D. T. Cassidy, D. M. Bruce, and B. F. Ventrudo, Rev. Sci. Instrum. 62, 2385 (1991).
[CrossRef]

Other (5)

Y. Sidorin and D. Howe, “Diode laser to waveguide butt coupling: extremely short external cavity,” Appl. Opt. (to be published) .

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993), Chap. 2.

E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, Orlando, Fla., 1991).

C. Kittel, Introduction to Solid-State Physics, 6th ed. (Wiley, New York, 1986), p. 130.

R. Binder, University of Arizona, Tucson, Ariz. 85721 (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for measurement of the wavelength tuning that is due to butt coupling. PC, personal computer.

Fig. 2
Fig. 2

Threshold current behavior in a butt-coupling scheme versus external-cavity length: prediction and experiment.

Fig. 3
Fig. 3

Wavelength tuning in extremely short ECLD butt coupling: experiment (solid curves) and estimate (dotted–dashed curves). Initial external cavity lengths are (A) z0=15±0.42 µm and (B) z0=5±0.42 µm. Scan increment, 60  nm. Corresponding changes in spectra are shown to the right.

Fig. 4
Fig. 4

Two consecutive experimental scans of a single period of the tuning curve, performed at 40-µm separation with 60-nm scan increments.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

reffν, z=r2+1-r22r2p=1CLL2 pzr2r3 exp-ik2zp,
gz, λ=αm-lnr1reffz, λ/d,
Ithr=Cthrαmd+lnR1Reff-1/2,

Metrics