Abstract

An erbium-doped fiber laser that produces a train of intense noiselike pulses with a broadband spectrum and a short coherence length is reported. The noiselike behavior was observed in the amplitude as well as in the phase of the pulses. The maximum spectral width obtained was 44  nm. The high intensity and the short coherence length of the light were maintained even after propagation through a long dispersive fiber. A theoretical model indicates that this mode of operation can be explained by the internal birefringence of the laser cavity combined with a nonlinear transmission element and the gain response of the fiber amplifier.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, Appl. Phys. B 58, 197 (1994).
    [Crossref]
  2. M. Horowitz, R. Daisy, B. Fischer, and J. L. Zyskind, Opt. Lett. 19, 1406 (1994).
    [Crossref] [PubMed]
  3. H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).
  4. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995), p. 247.
  5. R.. H. Stolen, J. Botineau, and A. Ashkin, Opt. Lett. 7, 512 (1982).
    [Crossref] [PubMed]
  6. K. I. Kitayama, Y. Kimura, and S. Seikai, Appl. Phys. Lett. 46, 317 (1985).
    [Crossref]
  7. H. G. Winful, Opt. Lett. 11, 33 (1986).
    [Crossref]
  8. D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, Electron. Lett. 27, 542, 730 (1991).
    [Crossref]
  9. U. Ghera, N. Konforti, and M. Tur, IEEE Photon. Technol. Lett. 4, 4 (1992).
    [Crossref]

1994 (3)

M. E. Fermann, Appl. Phys. B 58, 197 (1994).
[Crossref]

M. Horowitz, R. Daisy, B. Fischer, and J. L. Zyskind, Opt. Lett. 19, 1406 (1994).
[Crossref] [PubMed]

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).

1992 (1)

U. Ghera, N. Konforti, and M. Tur, IEEE Photon. Technol. Lett. 4, 4 (1992).
[Crossref]

1991 (1)

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, Electron. Lett. 27, 542, 730 (1991).
[Crossref]

1986 (1)

1985 (1)

K. I. Kitayama, Y. Kimura, and S. Seikai, Appl. Phys. Lett. 46, 317 (1985).
[Crossref]

1982 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995), p. 247.

Ashkin, A.

Botineau, J.

Daisy, R.

Fermann, M. E.

M. E. Fermann, Appl. Phys. B 58, 197 (1994).
[Crossref]

Fischer, B.

Ghera, U.

U. Ghera, N. Konforti, and M. Tur, IEEE Photon. Technol. Lett. 4, 4 (1992).
[Crossref]

Haus, H. A.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).

Horowitz, M.

Ippen, E. P.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).

Kimura, Y.

K. I. Kitayama, Y. Kimura, and S. Seikai, Appl. Phys. Lett. 46, 317 (1985).
[Crossref]

Kitayama, K. I.

K. I. Kitayama, Y. Kimura, and S. Seikai, Appl. Phys. Lett. 46, 317 (1985).
[Crossref]

Konforti, N.

U. Ghera, N. Konforti, and M. Tur, IEEE Photon. Technol. Lett. 4, 4 (1992).
[Crossref]

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, Electron. Lett. 27, 542, 730 (1991).
[Crossref]

Matsas, V.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, Electron. Lett. 27, 542, 730 (1991).
[Crossref]

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, Electron. Lett. 27, 542, 730 (1991).
[Crossref]

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, Electron. Lett. 27, 542, 730 (1991).
[Crossref]

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, Electron. Lett. 27, 542, 730 (1991).
[Crossref]

Seikai, S.

K. I. Kitayama, Y. Kimura, and S. Seikai, Appl. Phys. Lett. 46, 317 (1985).
[Crossref]

Stolen, R.. H.

Tamura, K.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).

Tur, M.

U. Ghera, N. Konforti, and M. Tur, IEEE Photon. Technol. Lett. 4, 4 (1992).
[Crossref]

Winful, H. G.

Zyskind, J. L.

Appl. Phys. B (1)

M. E. Fermann, Appl. Phys. B 58, 197 (1994).
[Crossref]

Appl. Phys. Lett. (1)

K. I. Kitayama, Y. Kimura, and S. Seikai, Appl. Phys. Lett. 46, 317 (1985).
[Crossref]

Electron. Lett. (1)

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M. W. Phillips, Electron. Lett. 27, 542, 730 (1991).
[Crossref]

IEEE J. Lightwave Technol. (1)

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Lightwave Technol. 30, 200 (1994).

IEEE Photon. Technol. Lett. (1)

U. Ghera, N. Konforti, and M. Tur, IEEE Photon. Technol. Lett. 4, 4 (1992).
[Crossref]

Opt. Lett. (3)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995), p. 247.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic setup of the laser: PC’s, polarization controllers; P’s, polarizers; ISO, isolator; DCF, positive-dispersion fiber; Er, erbium-doped fiber amplifier.

Fig. 2
Fig. 2

(a) Optical spectrum and (b) the corresponding background-free autocorrelation trace of the laser output. (c) Spectrum with the maximum spectral width that was obtained.

Fig. 3
Fig. 3

(a) Calculated time-dependent intensity and (b) autocorrelation trace obtained by numerical solution of the theoretical model after 300  iterations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Pt=P0 sin2ϕNL+ϕ0/2sin22θ,

Metrics