Abstract

An interferometric strain-sensing system that combines an unbalanced Mach–Zehnder wavelength discriminator and spliced different-diameter fiber Bragg gratings is presented that has the capability to distinguish strain from temperature effects. Because the gratings are written in 135- and 165-µm-diameter fibers drawn from the same preform, when they are spliced they show similar temperature sensitivities but different responses to applied strain. Thus the relative Bragg wavelength difference of the two gratings is affected only by strain, and one can measure it accurately by monitoring the amplitude variation of the interference signal rather than the conventional phase variation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
    [CrossRef]
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18, 1370 (1993).
    [CrossRef]
  3. M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
    [CrossRef]
  4. M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, Electron. Lett. 30, 1085 (1994).
    [CrossRef]
  5. S. E. Kanellopoulos, V. A. Handerek, and A. J. Rogers, Opt. Lett. 20, 333 (1995).
    [CrossRef] [PubMed]
  6. S. W. James, M. L. Dockney, and R. P. Tatam, Electron. Lett. 32, 1133 (1996).
    [CrossRef]
  7. S. B. Lee, L. Yu, and S. S. Choi, presented at the 1996 Optoelectronics and Communications Conference, Tokyo, July 16–19, 1996.
  8. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 8, 1223 (1996).
    [CrossRef]
  9. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, Appl. Opt. 34, 6859 (1995).
    [CrossRef] [PubMed]

1996 (3)

M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
[CrossRef]

S. W. James, M. L. Dockney, and R. P. Tatam, Electron. Lett. 32, 1133 (1996).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 8, 1223 (1996).
[CrossRef]

1995 (2)

1994 (1)

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

1993 (1)

1992 (1)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
[CrossRef]

Archambault, J.-L.

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18, 1370 (1993).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
[CrossRef]

Choi, S. S.

S. B. Lee, L. Yu, and S. S. Choi, presented at the 1996 Optoelectronics and Communications Conference, Tokyo, July 16–19, 1996.

Dakin, J. P.

M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
[CrossRef]

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

Dockney, M. L.

S. W. James, M. L. Dockney, and R. P. Tatam, Electron. Lett. 32, 1133 (1996).
[CrossRef]

Geiger, H.

M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
[CrossRef]

Handerek, V. A.

James, S. W.

S. W. James, M. L. Dockney, and R. P. Tatam, Electron. Lett. 32, 1133 (1996).
[CrossRef]

Kanellopoulos, S. E.

Kersey, A. D.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 8, 1223 (1996).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18, 1370 (1993).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
[CrossRef]

Krug, P. A.

Lee, S. B.

S. B. Lee, L. Yu, and S. S. Choi, presented at the 1996 Optoelectronics and Communications Conference, Tokyo, July 16–19, 1996.

Morey, W. W.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18, 1370 (1993).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
[CrossRef]

Ouellette, F.

Patrick, H. J.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 8, 1223 (1996).
[CrossRef]

Pedrazzani, J. R.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 8, 1223 (1996).
[CrossRef]

Reekie, L.

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

Rogers, A. J.

Tatam, R. P.

S. W. James, M. L. Dockney, and R. P. Tatam, Electron. Lett. 32, 1133 (1996).
[CrossRef]

Thorncraft, D. A.

Vengsarkar, A. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 8, 1223 (1996).
[CrossRef]

Williams, G. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 8, 1223 (1996).
[CrossRef]

Xu, M. G.

M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
[CrossRef]

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

Yoffe, G. W.

Yu, L.

S. B. Lee, L. Yu, and S. S. Choi, presented at the 1996 Optoelectronics and Communications Conference, Tokyo, July 16–19, 1996.

Appl. Opt. (1)

Electron. Lett. (3)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Electron. Lett. 28, 236 (1992).
[CrossRef]

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, Electron. Lett. 30, 1085 (1994).
[CrossRef]

S. W. James, M. L. Dockney, and R. P. Tatam, Electron. Lett. 32, 1133 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, IEEE Photon. Technol. Lett. 8, 1223 (1996).
[CrossRef]

J. Lightwave Technol. (1)

M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
[CrossRef]

Opt. Lett. (2)

Other (1)

S. B. Lee, L. Yu, and S. S. Choi, presented at the 1996 Optoelectronics and Communications Conference, Tokyo, July 16–19, 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. The sensor head is composed of 135- and 165-µm-diameter fiber Bragg gratings: ISO’s, isolators; EDF, erbium-doped fiber; WDM, wavelength division multiplexing; PZT, piezoelectric transducer; PC, polarization controller; PD, photodetector.

Fig. 2
Fig. 2

Temperature and strain responses of different-diameter Bragg gratings. All fibers were drawn from the same preform (KIST-1104, 18  mol. %, Ge doped). (a) Temperature sensitivities of (100-, 135-, 154-, and 165-µm-diameter) gratings. (b) Strain responses of spliced gratings.

Fig. 3
Fig. 3

Interference signal traces for (a) maximum- and (b) minimum-amplitude cases. The lower traces are modulation signals applied to a piezoelectric transducer. The increase in wavelength difference between these two cases was 0.6  nm.

Fig. 4
Fig. 4

Normalized amplitude variation with the total strain. The curve was calculated from Eq.  ( 1). Inset, wider-range output variation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Idet=Idc+a cos ϕ1+b cos ϕ2=Idc+a2+b2+2ab cos Δϕ1/2×cosϕ1-tan-1b sin Δϕ/a+b cos Δϕ,
Δϕ2πnd/λ2Δλ1-Δλ2=2πnd/λ2κΔ1-κΔ2+κT-κTΔT=2πnd/λ2κΔl1+l2×r22-r12/r12l2+r22l1,
Imax=IΔϕ=2nπ=a+b,  Imin=IΔϕ=2nπ+π=a-b,  a=Imax+Imin/2,  b=Imax-Imin/2.

Metrics