Abstract

The strain dependence of the optical power of Brillouin scattering in optical fibers has been measured for the first time to our knowledge. Together with measurements of the dependence of Brillouin power on temperature and the variation of Brillouin frequency with temperature and strain, we demonstrate, for what we believe to be the first time, the feasibility of a simultaneous temperature and strain sensor based on spontaneous Brillouin scattering.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
    [CrossRef]
  2. D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
    [CrossRef]
  3. X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 19, 141 (1994).
    [CrossRef]
  4. P. C. Wait and T. P. Newson, Opt. Commun. 122, 141 (1996).
    [CrossRef]
  5. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, presented at Optical Fiber Sensors-11, Sapporo, Japan, May 21–26, 1996.
  6. T. Horiguchi, NTT Access Network Systems Laboratory, 162 Tokai, Ibaraki 319 11, Japan (personal communication, May27, 1996).
  7. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E 76, 382 (1993).

1996 (1)

P. C. Wait and T. P. Newson, Opt. Commun. 122, 141 (1996).
[CrossRef]

1994 (1)

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E 76, 382 (1993).

1989 (2)

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Bao, X.

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, presented at Optical Fiber Sensors-11, Sapporo, Japan, May 21–26, 1996.

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E 76, 382 (1993).

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, presented at Optical Fiber Sensors-11, Sapporo, Japan, May 21–26, 1996.

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E 76, 382 (1993).

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
[CrossRef]

T. Horiguchi, NTT Access Network Systems Laboratory, 162 Tokai, Ibaraki 319 11, Japan (personal communication, May27, 1996).

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E 76, 382 (1993).

Jackson, D. A.

X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 19, 141 (1994).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Koyamada, Y.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E 76, 382 (1993).

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E 76, 382 (1993).

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
[CrossRef]

Newson, T. P.

P. C. Wait and T. P. Newson, Opt. Commun. 122, 141 (1996).
[CrossRef]

Pannell, C. N.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, presented at Optical Fiber Sensors-11, Sapporo, Japan, May 21–26, 1996.

Rogers, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, presented at Optical Fiber Sensors-11, Sapporo, Japan, May 21–26, 1996.

Tateda, M.

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
[CrossRef]

Wait, P. C.

P. C. Wait and T. P. Newson, Opt. Commun. 122, 141 (1996).
[CrossRef]

Webb, D. J.

Electron. Lett. (1)

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, Electron. Lett. 25, 913 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Horiguchi, T. Kurashima, and M. Tateda, IEEE Photon. Technol. Lett. 1, 107 (1989).
[CrossRef]

IEICE Trans. Commun. E (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E 76, 382 (1993).

Opt. Commun. (1)

P. C. Wait and T. P. Newson, Opt. Commun. 122, 141 (1996).
[CrossRef]

Opt. Lett. (1)

Other (2)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, presented at Optical Fiber Sensors-11, Sapporo, Japan, May 21–26, 1996.

T. Horiguchi, NTT Access Network Systems Laboratory, 162 Tokai, Ibaraki 319 11, Japan (personal communication, May27, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Brillouin spectra at 39 and 77 °C for 5.2-mW input power. Feature a is thought to be produced by a section of the test fiber under high strain. The interference order of each peak is indicated.

Fig. 2
Fig. 2

Brillouin spectra for 5350 and 11, 770 µ. Peaks a are the contributions from the unstrained lead fiber. The interference order of each peak is indicated.

Fig. 3
Fig. 3

Brillouin frequency shift and Brillouin/Rayleigh power ratio versus temperature for 5.2-mW input power. The theory lines show AT/νB2 dependence on temperature, with A normalized to the first point in each plot.

Fig. 4
Fig. 4

Brillouin frequency shift and Brillouin/Rayleigh power ratio versus strain. The theory line shows AT/νB2 dependence on strain, with A normalized to the projected Stokes power at 0 µ.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

νB=2nvA/λL,
δνB=Cνδ+CνTδT.
100δPBPB, T=CPδ+CPTδT,
PB=AT/νB2,
δPBPB=T+δTνB2TνB+Cνδ+CνTδT2-1.
Cν=0.0483±0.0004 MHz/μ,  CνT=1.10±0.02 MHz/K,  CP=-7.7±1.4×10-4%/μ,  CPT=0.36±0.06%/K,

Metrics