Abstract

We show that high-temperature reduction in a CO–CO<sub>2</sub> atmosphere increases the photorefractive sensitivity of KNbO<sub>3</sub>:Rh at 860nm by 4 orders of magnitude compared with that of the as-grown crystal. The effective trap density is increased by a factor of 3, and the photoconductivity by a factor of 30, and the photorefractive response at a grating spacing of 0.15 mu;m is accelerated by a factor of 400. The grating buildup time at a grating spacing of 0.7 µm and an intensity of 1Wcm<sup>-2</sup> is 0.5 s, a value comparable with that of as-grown KNbO<sub>3</sub>:Fe at visible wavelengths. The optical and photorefractive parameters of Rh-doped KNbO<sub>3</sub> subjected to reduction treatment are characterized for wavelengths of 0.48–1.064 µm .

© 1997 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription