Abstract

By combining step-scan Fourier-transform Michelson interferometry, an infrared microscope, and mercury cadmium telluride focal-plane array image detection we have constructed a mid-infrared spectroscopic imaging system that simultaneously records high-fidelity images and spectra of materials from 3500 to 900  cm-1 (2.8 to 11  µm) at a variety of spectral resolutions. The fidelity of the spectral images is determined by the pixel number density of the focal-plane array. Step-scan imaging principles and instrument design details are outlined. Spatial resolution measurements and infrared chemical imaging examples are presented, and the results are discussed with respect to implications for chemical analysis of biosystems and composite materials.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Treado, I. W. Levin, and E. N. Lewis, Appl. Spectrosc. 48, 607 (1994).
    [Crossref]
  2. E. N. Lewis and I. W. Levin, Appl. Spectrosc. 49, 672 (1995).
    [Crossref]
  3. E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, Anal. Chem. 67, 3377 (1995).
    [Crossref] [PubMed]
  4. E. N. Lewis, A. M. Gorbach, C. Marcott, and I. W. Levin, Appl. Spectrosc. 50, 263 (1996).
    [Crossref]
  5. L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, Nature Med. 3, 235 (1997).
    [Crossref]
  6. E. N. Lewis, L. H. Kidder, J. F. Arens, M. C. Peck, and I. W. Levin, Appl. Spectrosc. 51, 219 (1997).
  7. D. Wienke and K. Cammann, Anal. Chem. 68, 3987 (1996).
    [Crossref]
  8. D. Wienke and K. Cammann, Anal. Chem. 68, 3994 (1996).
    [Crossref]
  9. M. A. Harthcock and S. C. Atkin, Appl. Spectrosc. 42, 449 (1989).
    [Crossref]
  10. A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, Science 228, 1147 (1985).
    [Crossref] [PubMed]
  11. G. C. Bailey, Proc. SPIE 197, 83 (1979).
  12. E. Keto, R. Ball, J. F. Arens, J. G. Jernigan, and M. M. Meixner, Int. J. Infrared Millimeter Waves 11, 13 (1992).
  13. X. Wang and E. N. Lewis, in Fluorescence Imaging Spectroscopy and Microscopy, X. F. Wang and B. Herman, eds. (Wiley, New York, 1996), pp. 125–156.
  14. E. J. Heilweil, National Institute of Standards and Technology, Gaithersburg, Md. 20899-0001 personal Communication, 1997).

1997 (2)

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, Nature Med. 3, 235 (1997).
[Crossref]

E. N. Lewis, L. H. Kidder, J. F. Arens, M. C. Peck, and I. W. Levin, Appl. Spectrosc. 51, 219 (1997).

1996 (3)

D. Wienke and K. Cammann, Anal. Chem. 68, 3987 (1996).
[Crossref]

D. Wienke and K. Cammann, Anal. Chem. 68, 3994 (1996).
[Crossref]

E. N. Lewis, A. M. Gorbach, C. Marcott, and I. W. Levin, Appl. Spectrosc. 50, 263 (1996).
[Crossref]

1995 (2)

E. N. Lewis and I. W. Levin, Appl. Spectrosc. 49, 672 (1995).
[Crossref]

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, Anal. Chem. 67, 3377 (1995).
[Crossref] [PubMed]

1994 (1)

1992 (1)

E. Keto, R. Ball, J. F. Arens, J. G. Jernigan, and M. M. Meixner, Int. J. Infrared Millimeter Waves 11, 13 (1992).

1989 (1)

1985 (1)

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, Science 228, 1147 (1985).
[Crossref] [PubMed]

1979 (1)

G. C. Bailey, Proc. SPIE 197, 83 (1979).

Arens, J. F.

E. N. Lewis, L. H. Kidder, J. F. Arens, M. C. Peck, and I. W. Levin, Appl. Spectrosc. 51, 219 (1997).

E. Keto, R. Ball, J. F. Arens, J. G. Jernigan, and M. M. Meixner, Int. J. Infrared Millimeter Waves 11, 13 (1992).

Atkin, S. C.

Bailey, G. C.

G. C. Bailey, Proc. SPIE 197, 83 (1979).

Ball, R.

E. Keto, R. Ball, J. F. Arens, J. G. Jernigan, and M. M. Meixner, Int. J. Infrared Millimeter Waves 11, 13 (1992).

Cammann, K.

D. Wienke and K. Cammann, Anal. Chem. 68, 3987 (1996).
[Crossref]

D. Wienke and K. Cammann, Anal. Chem. 68, 3994 (1996).
[Crossref]

Dowrey, A. E.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, Anal. Chem. 67, 3377 (1995).
[Crossref] [PubMed]

Goetz, A. F. H.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, Science 228, 1147 (1985).
[Crossref] [PubMed]

Gorbach, A. M.

Harthcock, M. A.

Heilweil, E. J.

E. J. Heilweil, National Institute of Standards and Technology, Gaithersburg, Md. 20899-0001 personal Communication, 1997).

Jernigan, J. G.

E. Keto, R. Ball, J. F. Arens, J. G. Jernigan, and M. M. Meixner, Int. J. Infrared Millimeter Waves 11, 13 (1992).

Kalasinsky, V. F.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, Nature Med. 3, 235 (1997).
[Crossref]

Keto, E.

E. Keto, R. Ball, J. F. Arens, J. G. Jernigan, and M. M. Meixner, Int. J. Infrared Millimeter Waves 11, 13 (1992).

Kidder, L. H.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, Nature Med. 3, 235 (1997).
[Crossref]

E. N. Lewis, L. H. Kidder, J. F. Arens, M. C. Peck, and I. W. Levin, Appl. Spectrosc. 51, 219 (1997).

Levin, I. W.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, Nature Med. 3, 235 (1997).
[Crossref]

E. N. Lewis, L. H. Kidder, J. F. Arens, M. C. Peck, and I. W. Levin, Appl. Spectrosc. 51, 219 (1997).

E. N. Lewis, A. M. Gorbach, C. Marcott, and I. W. Levin, Appl. Spectrosc. 50, 263 (1996).
[Crossref]

E. N. Lewis and I. W. Levin, Appl. Spectrosc. 49, 672 (1995).
[Crossref]

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, Anal. Chem. 67, 3377 (1995).
[Crossref] [PubMed]

P. J. Treado, I. W. Levin, and E. N. Lewis, Appl. Spectrosc. 48, 607 (1994).
[Crossref]

Lewis, E. N.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, Nature Med. 3, 235 (1997).
[Crossref]

E. N. Lewis, L. H. Kidder, J. F. Arens, M. C. Peck, and I. W. Levin, Appl. Spectrosc. 51, 219 (1997).

E. N. Lewis, A. M. Gorbach, C. Marcott, and I. W. Levin, Appl. Spectrosc. 50, 263 (1996).
[Crossref]

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, Anal. Chem. 67, 3377 (1995).
[Crossref] [PubMed]

E. N. Lewis and I. W. Levin, Appl. Spectrosc. 49, 672 (1995).
[Crossref]

P. J. Treado, I. W. Levin, and E. N. Lewis, Appl. Spectrosc. 48, 607 (1994).
[Crossref]

X. Wang and E. N. Lewis, in Fluorescence Imaging Spectroscopy and Microscopy, X. F. Wang and B. Herman, eds. (Wiley, New York, 1996), pp. 125–156.

Luke, J. L.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, Nature Med. 3, 235 (1997).
[Crossref]

Marcott, C.

E. N. Lewis, A. M. Gorbach, C. Marcott, and I. W. Levin, Appl. Spectrosc. 50, 263 (1996).
[Crossref]

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, Anal. Chem. 67, 3377 (1995).
[Crossref] [PubMed]

Meixner, M. M.

E. Keto, R. Ball, J. F. Arens, J. G. Jernigan, and M. M. Meixner, Int. J. Infrared Millimeter Waves 11, 13 (1992).

Peck, M. C.

E. N. Lewis, L. H. Kidder, J. F. Arens, M. C. Peck, and I. W. Levin, Appl. Spectrosc. 51, 219 (1997).

Reeder, R. C.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, Anal. Chem. 67, 3377 (1995).
[Crossref] [PubMed]

Rock, B. N.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, Science 228, 1147 (1985).
[Crossref] [PubMed]

Solomon, J. E.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, Science 228, 1147 (1985).
[Crossref] [PubMed]

Story, G. M.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, Anal. Chem. 67, 3377 (1995).
[Crossref] [PubMed]

Treado, P. J.

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, Anal. Chem. 67, 3377 (1995).
[Crossref] [PubMed]

P. J. Treado, I. W. Levin, and E. N. Lewis, Appl. Spectrosc. 48, 607 (1994).
[Crossref]

Vane, G.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, Science 228, 1147 (1985).
[Crossref] [PubMed]

Wang, X.

X. Wang and E. N. Lewis, in Fluorescence Imaging Spectroscopy and Microscopy, X. F. Wang and B. Herman, eds. (Wiley, New York, 1996), pp. 125–156.

Wienke, D.

D. Wienke and K. Cammann, Anal. Chem. 68, 3987 (1996).
[Crossref]

D. Wienke and K. Cammann, Anal. Chem. 68, 3994 (1996).
[Crossref]

Anal. Chem. (3)

E. N. Lewis, P. J. Treado, R. C. Reeder, G. M. Story, A. E. Dowrey, C. Marcott, and I. W. Levin, Anal. Chem. 67, 3377 (1995).
[Crossref] [PubMed]

D. Wienke and K. Cammann, Anal. Chem. 68, 3987 (1996).
[Crossref]

D. Wienke and K. Cammann, Anal. Chem. 68, 3994 (1996).
[Crossref]

Appl. Spectrosc. (5)

Int. J. Infrared Millimeter Waves (1)

E. Keto, R. Ball, J. F. Arens, J. G. Jernigan, and M. M. Meixner, Int. J. Infrared Millimeter Waves 11, 13 (1992).

Nature Med. (1)

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, Nature Med. 3, 235 (1997).
[Crossref]

Proc. SPIE (1)

G. C. Bailey, Proc. SPIE 197, 83 (1979).

Science (1)

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, Science 228, 1147 (1985).
[Crossref] [PubMed]

Other (2)

X. Wang and E. N. Lewis, in Fluorescence Imaging Spectroscopy and Microscopy, X. F. Wang and B. Herman, eds. (Wiley, New York, 1996), pp. 125–156.

E. J. Heilweil, National Institute of Standards and Technology, Gaithersburg, Md. 20899-0001 personal Communication, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A, bright-field, multiwavelength IR image of a U.S. Air Force 1951 resolution target recorded with the MCT array and microscope. The large bars in the lower right-hand corner (group 4, element 1) are 30  µm wide. The entire field of view is 640 µm. B, Line plot through group 5, showing the decrease in resolution as a function of increasing spatial frequency.

Fig. 2
Fig. 2

A, bright-field, multiwavelength IR image and B, IR spectroscopic image extracted from the data set at 1600  cm-1 of a sample composed of a metal film, a 5-µm polystyrene film, and air. The spectrum of polystyrene shown in C is the result of averaging 40 spectra from a total of 65, 536. The spectrum highlights the usable spectral range of the MCT array detector (900–3500  cm-1).

Fig. 3
Fig. 3

A, composite synthetic image and B, two spectra from a sample that comprises a mixture of two lipids, DPPC and DHPC. The spectra are 40-pixel averages from the data set. The image is constructed by a multispectral Euclidean distance metric in which each spectrum is determined to resemble the spectrum of DPPC, of DHPC, or of air. This composite image is digitized such that the pixels that most closely resemble DPPC and DHPC are black and gray, respectively, and those for air or lack of sample are white.

Metrics