Abstract

Femtosecond pulses can be shaped in the time domain by diffraction from dynamic holograms in a photorefractive multiple quantum well placed inside a Fourier pulse shaper. We present several examples of shaped pulses obtained by controlling the amplitude or the phase of the hologram writing beams, which modifies the complex spectrum of the femtosecond output.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
    [CrossRef]
  2. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
    [CrossRef]
  3. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
    [CrossRef]
  4. A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
    [CrossRef]
  5. M. M. Wefers, K. A. Neilson, and A. M. Weiner, Opt. Lett. 21, 746 (1996).
    [CrossRef] [PubMed]
  6. K. Ema and F. Shimizu, Jpn. J. Appl. Phys. 29, L631 (1990).
    [CrossRef]
  7. M. C. Nuss and R. L. Morrisson, Opt. Lett. 20, 740 (1995).
    [CrossRef] [PubMed]
  8. K. Ema, Jpn. J. Appl. Phys. 30, L2046 (1991).
    [CrossRef]
  9. D. D. Nolte and M. R. Melloch, in Photorefractive Effects and Materials, D. Nolte, ed. (Kluwer, Dordrecht, The Netherlands, 1995).
    [CrossRef]
  10. Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, J. Opt. Soc. Am. B 9, 1626 (1992).
    [CrossRef]
  11. R. M. Brubaker, Q. N. Wang, D. D. Nolte, E. S. Harmon, and M. R. Melloch, J. Opt. Soc. Am. B 11, 1038 (1994).
    [CrossRef]
  12. C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, Appl. Phys. Lett. 68, 517 (1996).
    [CrossRef]
  13. M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, and A. Partovi, Opt. Lett. 19, 664 (1994).
    [CrossRef] [PubMed]
  14. L. Lepetit, G. Cheriaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]

1996 (2)

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

M. M. Wefers, K. A. Neilson, and A. M. Weiner, Opt. Lett. 21, 746 (1996).
[CrossRef] [PubMed]

1995 (3)

1994 (2)

1992 (2)

Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, J. Opt. Soc. Am. B 9, 1626 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

1991 (1)

K. Ema, Jpn. J. Appl. Phys. 30, L2046 (1991).
[CrossRef]

1990 (2)

1988 (1)

Brubaker, R. M.

Cheriaux, G.

Chiu, T. H.

De Matos, C.

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

Ema, K.

K. Ema, Jpn. J. Appl. Phys. 30, L2046 (1991).
[CrossRef]

K. Ema and F. Shimizu, Jpn. J. Appl. Phys. 29, L631 (1990).
[CrossRef]

Gosselin, S.

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

Harmon, E. S.

Heritage, J. P.

Joffre, M.

Kirschner, E. M.

L’Haridon, H.

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

Lambert, B.

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

Le Corre, A.

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
[CrossRef]

Lepetit, L.

Li, M.

Melloch, M. R.

Morrisson, R. L.

Neilson, K. A.

Nolte, D. D.

Nuss, M. C.

Partovi, A.

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
[CrossRef]

Pleumeekers, J.

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

Salaün, S.

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

Shimizu, F.

K. Ema and F. Shimizu, Jpn. J. Appl. Phys. 29, L631 (1990).
[CrossRef]

Wang, Q. N.

Wefers, M. M.

Weiner, A. M.

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (2)

K. Ema and F. Shimizu, Jpn. J. Appl. Phys. 29, L631 (1990).
[CrossRef]

K. Ema, Jpn. J. Appl. Phys. 30, L2046 (1991).
[CrossRef]

Opt. Lett. (4)

Prog. Quantum Electron. (1)

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

Other (1)

D. D. Nolte and M. R. Melloch, in Photorefractive Effects and Materials, D. Nolte, ed. (Kluwer, Dordrecht, The Netherlands, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for femtosecond pulse shaping using photorefractive gratings written in MQW’s. The focusing length of the cylindrical lenses in the pulse shaper is 10  cm, and the two gratings have a groove density of 1800  lines/mm, leading to a spatial spectrum separation of 0.36  mm/nm. The inset shows the writing geometry on the vertical plane. BS, beam splitter; U, applied voltage.

Fig. 2
Fig. 2

Phase of the beam diffracted from the MQW in the pulse shaper, extracted from the spectral interference between the reference pulse and the diffracted pulse.

Fig. 3
Fig. 3

Electric-field cross-correlation data and the extracted envelope of a shaped fs pulse when (a) a 0/0.9π phase step mask and (b) a double-slit amplitude mask was introduced into the writing beam.

Fig. 4
Fig. 4

Diffraction intensity as a function of the window width at the Fourier plane controlled by a single slit, showing the bandwidth limitation of the MQW sample. The dashed lines are guides for the eye.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Hω=1-<ωωcexpi0.9πωcω<,
Eoutω=EinωHωfω,
Hω=Bω-ωs/2+Bω+ωs/2,
Bω=1ωωw/20ω>ωw/2.

Metrics