Abstract

Boron- and germanium-doped highly photosensitive cladding is used in a novel design to achieve photosensitive Er/Yb-doped fibers, permitting short, strong gratings (length 1 cm, reflectivity >99%) to be written without hydrogenation. The high absorption at 980  nm in Er/Yb fibers permits efficient pump absorption over a short device length, which is ideal for achieving highly efficient single-frequency fiber lasers. Both single-frequency Bragg-grating reflector and distributed-feedback lasers with slope efficiencies of 25% with respect to launched pump power have been realized in such fibers.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Ball and W. W. Morey, Opt. Lett. 19, 1979 (1994).
    [CrossRef] [PubMed]
  2. J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, Electron. Lett. 30, 972 (1994).
    [CrossRef]
  3. V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
    [CrossRef]
  4. J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 2101 (1994).
    [CrossRef] [PubMed]
  5. W. H. Loh, L. Dong, and J. E. Caplen, Appl. Phys. Lett. 69, 2151 (1996).
    [CrossRef]
  6. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, Electron. Lett. 29, 1191 (1993).
    [CrossRef]
  7. L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, and D. N. Payne, IEEE Photon. Technol. Lett. 7, 1048 (1995).
    [CrossRef]

1996 (1)

W. H. Loh, L. Dong, and J. E. Caplen, Appl. Phys. Lett. 69, 2151 (1996).
[CrossRef]

1995 (1)

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, and D. N. Payne, IEEE Photon. Technol. Lett. 7, 1048 (1995).
[CrossRef]

1994 (3)

G. Ball and W. W. Morey, Opt. Lett. 19, 1979 (1994).
[CrossRef] [PubMed]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 2101 (1994).
[CrossRef] [PubMed]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, Electron. Lett. 30, 972 (1994).
[CrossRef]

1993 (2)

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

Archambault, J. L.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, Electron. Lett. 30, 972 (1994).
[CrossRef]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 2101 (1994).
[CrossRef] [PubMed]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

Ball, G.

Caplen, J. E.

W. H. Loh, L. Dong, and J. E. Caplen, Appl. Phys. Lett. 69, 2151 (1996).
[CrossRef]

Cruz, J. L.

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, and D. N. Payne, IEEE Photon. Technol. Lett. 7, 1048 (1995).
[CrossRef]

Delavaux, J-M. P.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

DiGiovanni, D. J.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

Dong, L.

W. H. Loh, L. Dong, and J. E. Caplen, Appl. Phys. Lett. 69, 2151 (1996).
[CrossRef]

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, and D. N. Payne, IEEE Photon. Technol. Lett. 7, 1048 (1995).
[CrossRef]

Grubb, S. G.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

Kringlebotn, J. T.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, Electron. Lett. 30, 972 (1994).
[CrossRef]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 2101 (1994).
[CrossRef] [PubMed]

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

Loh, W. H.

W. H. Loh, L. Dong, and J. E. Caplen, Appl. Phys. Lett. 69, 2151 (1996).
[CrossRef]

Mizrahi, V.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

Morey, W. W.

Park, Y. K.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

Payne, D. N.

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, and D. N. Payne, IEEE Photon. Technol. Lett. 7, 1048 (1995).
[CrossRef]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 2101 (1994).
[CrossRef] [PubMed]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, Electron. Lett. 30, 972 (1994).
[CrossRef]

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

Reekie, L.

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, and D. N. Payne, IEEE Photon. Technol. Lett. 7, 1048 (1995).
[CrossRef]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, Opt. Lett. 19, 2101 (1994).
[CrossRef] [PubMed]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, Electron. Lett. 30, 972 (1994).
[CrossRef]

Townsend, J. E.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, Electron. Lett. 30, 972 (1994).
[CrossRef]

Vienne, G. G.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, Electron. Lett. 30, 972 (1994).
[CrossRef]

Xu, M. G.

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, and D. N. Payne, IEEE Photon. Technol. Lett. 7, 1048 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

W. H. Loh, L. Dong, and J. E. Caplen, Appl. Phys. Lett. 69, 2151 (1996).
[CrossRef]

Electron. Lett. (2)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, Electron. Lett. 30, 972 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, and D. N. Payne, IEEE Photon. Technol. Lett. 7, 1048 (1995).
[CrossRef]

J. Lightwave Technol. (1)

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and J-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

UV-induced absorption in various types of fiber. A 248-nm excimer laser was used as the UV source, operating at 0.3 J/cm2 and 20  Hz. The exposure time is 5  min.

Fig. 2
Fig. 2

Structure of the photosensitive Er/YB fiber with an index-matched B/Ge/Si cladding.

Fig. 3
Fig. 3

Grating formation in the photosensitive Er/Yb fiber.

Fig. 4
Fig. 4

DBR laser constructed with the photosensitive Er/Yb fiber. L1=5 mm, L2=20 mm, L3=10 mm, R1=90%, R2>99%. WDM, wavelength division multiplexer; OC, output coupler; HR, high reflector.

Fig. 5
Fig. 5

DFB laser constructed with the photosensitive Er/Yb fiber. OC, output coupler; HR, high reflector; SM, single mode.

Metrics