Abstract

We present a coupled-mode theory of fiber-optic add–drop filters, which involve directional coupling between two fibers combined with fiber Bragg gratings defined inside the coupling region. The analysis self-consistently accounts for both the directional and the reflection coupling, and the propagation constants and structure of the supermodes of the combined structure are derived. We present a detailed analysis of a filter design based on identical fibers. The calculated device parameters satisfy the requirements for dense wavelength-division multiplexing applications.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
    [CrossRef]
  2. J. I. Archambault, P. St. J. Russell, P. Hua, and L. Reekie, Opt. Lett. 19, 180 (1994).
    [CrossRef]
  3. M. J. Guy, S. B. Chernikov, J. R. Taylor, and R. Kashyap, Electron. Lett. 30, 1512 (1994).
    [CrossRef]
  4. F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, IEEE Photon. Technol. Lett. 7, 388 (1995).
    [CrossRef]
  5. I. Baumann, J. Seifert, W. Novak, and M. Sauer, IEEE Photon. Technol. Lett. 8, 1331 (1996).
    [CrossRef]
  6. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 6.
  7. R. C. Alferness and P. S. Cross, IEEE J. Quantum Electron. QE-14, 843 (1978).
    [CrossRef]

1996 (1)

I. Baumann, J. Seifert, W. Novak, and M. Sauer, IEEE Photon. Technol. Lett. 8, 1331 (1996).
[CrossRef]

1995 (1)

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, IEEE Photon. Technol. Lett. 7, 388 (1995).
[CrossRef]

1994 (2)

M. J. Guy, S. B. Chernikov, J. R. Taylor, and R. Kashyap, Electron. Lett. 30, 1512 (1994).
[CrossRef]

J. I. Archambault, P. St. J. Russell, P. Hua, and L. Reekie, Opt. Lett. 19, 180 (1994).
[CrossRef]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

1978 (1)

R. C. Alferness and P. S. Cross, IEEE J. Quantum Electron. QE-14, 843 (1978).
[CrossRef]

Albert, J.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, IEEE Photon. Technol. Lett. 7, 388 (1995).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Alferness, R. C.

R. C. Alferness and P. S. Cross, IEEE J. Quantum Electron. QE-14, 843 (1978).
[CrossRef]

Archambault, J. I.

Baumann, I.

I. Baumann, J. Seifert, W. Novak, and M. Sauer, IEEE Photon. Technol. Lett. 8, 1331 (1996).
[CrossRef]

Bilodeau, F.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, IEEE Photon. Technol. Lett. 7, 388 (1995).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Chernikov, S. B.

M. J. Guy, S. B. Chernikov, J. R. Taylor, and R. Kashyap, Electron. Lett. 30, 1512 (1994).
[CrossRef]

Cross, P. S.

R. C. Alferness and P. S. Cross, IEEE J. Quantum Electron. QE-14, 843 (1978).
[CrossRef]

Guy, M. J.

M. J. Guy, S. B. Chernikov, J. R. Taylor, and R. Kashyap, Electron. Lett. 30, 1512 (1994).
[CrossRef]

Hill, K. O.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, IEEE Photon. Technol. Lett. 7, 388 (1995).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Hua, P.

Johnson, D. C.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, IEEE Photon. Technol. Lett. 7, 388 (1995).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Kashyap, R.

M. J. Guy, S. B. Chernikov, J. R. Taylor, and R. Kashyap, Electron. Lett. 30, 1512 (1994).
[CrossRef]

Malo, B.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, IEEE Photon. Technol. Lett. 7, 388 (1995).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Novak, W.

I. Baumann, J. Seifert, W. Novak, and M. Sauer, IEEE Photon. Technol. Lett. 8, 1331 (1996).
[CrossRef]

Reekie, L.

Russell, P. St. J.

Sauer, M.

I. Baumann, J. Seifert, W. Novak, and M. Sauer, IEEE Photon. Technol. Lett. 8, 1331 (1996).
[CrossRef]

Seifert, J.

I. Baumann, J. Seifert, W. Novak, and M. Sauer, IEEE Photon. Technol. Lett. 8, 1331 (1996).
[CrossRef]

Taylor, J. R.

M. J. Guy, S. B. Chernikov, J. R. Taylor, and R. Kashyap, Electron. Lett. 30, 1512 (1994).
[CrossRef]

Theriault, S.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, IEEE Photon. Technol. Lett. 7, 388 (1995).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 6.

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 6.

Appl. Phys. Lett. (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Electron. Lett. (1)

M. J. Guy, S. B. Chernikov, J. R. Taylor, and R. Kashyap, Electron. Lett. 30, 1512 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. C. Alferness and P. S. Cross, IEEE J. Quantum Electron. QE-14, 843 (1978).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, IEEE Photon. Technol. Lett. 7, 388 (1995).
[CrossRef]

I. Baumann, J. Seifert, W. Novak, and M. Sauer, IEEE Photon. Technol. Lett. 8, 1331 (1996).
[CrossRef]

Opt. Lett. (1)

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic schematic of a fiber-optic add–drop filter.

Fig. 2
Fig. 2

Drop output B202/A10|2 of the filter versus deviation from the central wavelength.

Fig. 3
Fig. 3

Return loss A202/A102.

Fig. 4
Fig. 4

Total transmission 1-[A20|2+|B20|2]/A102.

Fig. 5
Fig. 5

Total reflectivity [A202+B20|2]/A102 of the filter for the case of strong directional coupling κab>κ(κab=15 cm-1, hence βκab; other parameters are the same as in Figs.  24). The two independent peaks correspond to almost 100% reflection of each of the two forward-propagating orthogonal supermodes.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

dA1dz=-iκabB1 expi2Δβabz-iκA2 expi2Δβaz,
dA2dz=iκabB2 expi2Δβabz+iκ*A1 exp-i2Δβaz,
dB1dz=-iκab*A1 exp-i2Δβabz-iκB2 expi2Δβbz,
dB2dz=iκab*A2 expi2Δβabz+iκ*B1 exp-i2Δβbz,
2Δβa2βa-Kg=2βa-2π/Λg,
2Δβb2βb-Kg=2βb-2π/Λg,
2Δβabβa-βb=Δβa-Δβb,
A1z=A˜1zexpiΔβaz,
A2z=A˜2zexp-iΔβaz,
B1z=B˜1zexpiΔβbz,
B2z=B˜2zexp-iΔβbz.
ddz(A˜1A˜2B˜1B˜2)=[-iΔβa-iκ-iκab0iκ*iΔβa0iκab-iκab*0-iΔβb-iκ0iκab*iκ*iΔβb](A˜1A˜2B˜1B˜2).
s1,,4=±κ2-κab2+Δβab21/2±Δβa+Δβb21/2.
s1,,4=±κ2-κab±Δβ21/2.
B20=A102κab*κabexp-2iΔβL1×κ*exp-2iκabL1tanhs+L2-κab-Δβtanhs+L2+is+-exp2iκabL1tanhs-L2κab-Δβtanhs-L2+is-,
A20=A102exp-2iΔβL1×κ*exp-2iκabL1tanhs+L2-κab-Δβtanhs+L2+is++exp2iκabL1tanhs-L2κab-Δβtanhs-L2+is-,
R=tanh2sL2κ2s2+κab2 tanh2sL2,
tan2κabL1opt=sκabtanhsL2.

Metrics