Abstract

We investigate the characteristics of the optical near field of a subwavelength dielectric sphere by using a nanometric fiber tip and a sensitive technique of wavelength conversion. The decay length of the near field induced around the single sphere is directly measured to be 0.3 of its radius, obtained by precise positioning of the probe tip. A numerical calculation of the optical near field based on the Mie scattering theory is in good agreement with the experimental results. The enhancement of fluorescence collection efficiency in the near-field region is also observed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  2. H. Heinzelmann, D. W. Pohl, Appl. Phys. A. 59, 89 (1994).
    [CrossRef]
  3. D. W. Pohl, D. Courjon, eds., Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993).
  4. F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994); F. Zenhausern, Y. Martin, H. K. Wickramasinghe, Science 269, 1083 (1995).
    [CrossRef] [PubMed]
  5. M. Naya, S. Monomobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, Opt. Commun. 124, 9 (1996).
    [CrossRef]
  6. K. Jang, W. Jhe, Opt. Lett. 21, 236 (1996).
    [CrossRef] [PubMed]
  7. T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992); T. Pangaribuan, S. Jiang, M. Ohtsu, Electron. Lett. 29, 1978 (1993).
    [CrossRef]
  8. E. Betzig, P. L. Finn, J. S. Weiner, Appl. Phys. Lett. 60, 2484 (1992).
    [CrossRef]
  9. H. Chew, D. S. Wang, M. Kerker, Appl. Opt. 18, 2679 (1979).
    [CrossRef] [PubMed]
  10. X. S. Xie, R. C. Dunn, Science 265, 361 (1994); R. C. Dunn, R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, Phys. Rev. Lett. 75, 4772 (1995).
    [CrossRef] [PubMed]
  11. J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
    [CrossRef]
  12. W. Jhe, K. Jang, Phys. Rev. A 53, 1126 (1996).
    [CrossRef] [PubMed]
  13. J. M. Wylie, J. E. Sipe, Phys. Rev. A 30, 1185 (1984); D. Meschede, W. Jhe, E. A. Hinds, Phys. Rev. A 41, 1587 (1990).
    [CrossRef] [PubMed]

1996 (3)

M. Naya, S. Monomobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, Opt. Commun. 124, 9 (1996).
[CrossRef]

W. Jhe, K. Jang, Phys. Rev. A 53, 1126 (1996).
[CrossRef] [PubMed]

K. Jang, W. Jhe, Opt. Lett. 21, 236 (1996).
[CrossRef] [PubMed]

1994 (4)

X. S. Xie, R. C. Dunn, Science 265, 361 (1994); R. C. Dunn, R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, Phys. Rev. Lett. 75, 4772 (1995).
[CrossRef] [PubMed]

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

H. Heinzelmann, D. W. Pohl, Appl. Phys. A. 59, 89 (1994).
[CrossRef]

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994); F. Zenhausern, Y. Martin, H. K. Wickramasinghe, Science 269, 1083 (1995).
[CrossRef] [PubMed]

1992 (2)

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992); T. Pangaribuan, S. Jiang, M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Weiner, Appl. Phys. Lett. 60, 2484 (1992).
[CrossRef]

1984 (1)

J. M. Wylie, J. E. Sipe, Phys. Rev. A 30, 1185 (1984); D. Meschede, W. Jhe, E. A. Hinds, Phys. Rev. A 41, 1587 (1990).
[CrossRef] [PubMed]

1979 (1)

Betzig, E.

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Weiner, Appl. Phys. Lett. 60, 2484 (1992).
[CrossRef]

Brus, L. E.

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

Chew, H.

Dunn, R. C.

X. S. Xie, R. C. Dunn, Science 265, 361 (1994); R. C. Dunn, R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, Phys. Rev. Lett. 75, 4772 (1995).
[CrossRef] [PubMed]

Finn, P. L.

E. Betzig, P. L. Finn, J. S. Weiner, Appl. Phys. Lett. 60, 2484 (1992).
[CrossRef]

Heinzelmann, H.

H. Heinzelmann, D. W. Pohl, Appl. Phys. A. 59, 89 (1994).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Jang, K.

Jhe, W.

Jiang, S.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992); T. Pangaribuan, S. Jiang, M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

Kerker, M.

Macklin, J. J.

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

Monomobe, S.

M. Naya, S. Monomobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, Opt. Commun. 124, 9 (1996).
[CrossRef]

Naya, M.

M. Naya, S. Monomobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, Opt. Commun. 124, 9 (1996).
[CrossRef]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994); F. Zenhausern, Y. Martin, H. K. Wickramasinghe, Science 269, 1083 (1995).
[CrossRef] [PubMed]

Ohsawa, H.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992); T. Pangaribuan, S. Jiang, M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

Ohtsu, M.

M. Naya, S. Monomobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, Opt. Commun. 124, 9 (1996).
[CrossRef]

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992); T. Pangaribuan, S. Jiang, M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

Pangaribuan, T.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992); T. Pangaribuan, S. Jiang, M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

Pohl, D. W.

H. Heinzelmann, D. W. Pohl, Appl. Phys. A. 59, 89 (1994).
[CrossRef]

Saiki, T.

M. Naya, S. Monomobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, Opt. Commun. 124, 9 (1996).
[CrossRef]

Sipe, J. E.

J. M. Wylie, J. E. Sipe, Phys. Rev. A 30, 1185 (1984); D. Meschede, W. Jhe, E. A. Hinds, Phys. Rev. A 41, 1587 (1990).
[CrossRef] [PubMed]

Trautman, J. K.

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

Uma Maheswari, R.

M. Naya, S. Monomobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, Opt. Commun. 124, 9 (1996).
[CrossRef]

Wang, D. S.

Weiner, J. S.

E. Betzig, P. L. Finn, J. S. Weiner, Appl. Phys. Lett. 60, 2484 (1992).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994); F. Zenhausern, Y. Martin, H. K. Wickramasinghe, Science 269, 1083 (1995).
[CrossRef] [PubMed]

Wylie, J. M.

J. M. Wylie, J. E. Sipe, Phys. Rev. A 30, 1185 (1984); D. Meschede, W. Jhe, E. A. Hinds, Phys. Rev. A 41, 1587 (1990).
[CrossRef] [PubMed]

Xie, X. S.

X. S. Xie, R. C. Dunn, Science 265, 361 (1994); R. C. Dunn, R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, Phys. Rev. Lett. 75, 4772 (1995).
[CrossRef] [PubMed]

Yamada, K.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992); T. Pangaribuan, S. Jiang, M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994); F. Zenhausern, Y. Martin, H. K. Wickramasinghe, Science 269, 1083 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A. (1)

H. Heinzelmann, D. W. Pohl, Appl. Phys. A. 59, 89 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994); F. Zenhausern, Y. Martin, H. K. Wickramasinghe, Science 269, 1083 (1995).
[CrossRef] [PubMed]

E. Betzig, P. L. Finn, J. S. Weiner, Appl. Phys. Lett. 60, 2484 (1992).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992); T. Pangaribuan, S. Jiang, M. Ohtsu, Electron. Lett. 29, 1978 (1993).
[CrossRef]

Nature (1)

J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig, Nature (London) 369, 40 (1994).
[CrossRef]

Opt. Commun. (1)

M. Naya, S. Monomobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, Opt. Commun. 124, 9 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (2)

W. Jhe, K. Jang, Phys. Rev. A 53, 1126 (1996).
[CrossRef] [PubMed]

J. M. Wylie, J. E. Sipe, Phys. Rev. A 30, 1185 (1984); D. Meschede, W. Jhe, E. A. Hinds, Phys. Rev. A 41, 1587 (1990).
[CrossRef] [PubMed]

Science (1)

X. S. Xie, R. C. Dunn, Science 265, 361 (1994); R. C. Dunn, R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, Phys. Rev. Lett. 75, 4772 (1995).
[CrossRef] [PubMed]

Other (2)

D. W. Pohl, D. Courjon, eds., Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental configuration for measurement of the decay length of the optical near field. (a) Conventional collection-mode PSTM. (b) Fluorescence PSTM. Excitation light is omitted in (b) for clarity.

Fig. 2
Fig. 2

Experimental schematic of fluorescence detection with the collection-mode PSTM system: PZT, piezoelectric transducer; PMT, photomultiplier tube. The inset shows a scanning electron microscope image of the fiber tip.

Fig. 3
Fig. 3

Dependence of the fluorescence-detection intensity on the tip–sample separation. Curve a, just above the sphere; curve b, ≈500 nm from the sphere.

Fig. 4
Fig. 4

Numerical plot of the scattered-field intensity of a subwavelength sphere averaged over polarizations with a size parameter ka of 0.5 and evanescent-wave excitation assumed.

Metrics