Abstract

The narrow-linewidth laser emission from a scattering gain medium can be forced to oscillate in a narrower emission bandwidth with the introduction of a seed in much the same way as the injection-seeding technique used to produce single-mode oscillation from conventional lasers. The system exhibits complete spectral collapse at all wavelengths other than that of the seed and a large enhancement of the isotropic emission peak intensity. A theory explaining the emission characteristics and the minimum threshold seed energy required for locking is presented.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
    [CrossRef]
  2. N. M. Lawandy, A. S. L. Gomes, R. M. Balachandran, presented at the 1993 International Conference on Luminescence, University of Connecticut, Storrs, Conn., 1993.
  3. N. M. Lawandy, R. M. Balachandran, Nature (London) 373, 203 (1995).
    [CrossRef]
  4. R. M. Balachandran, N. M. Lawandy, Opt. Lett. 20, 1271 (1995).
    [CrossRef] [PubMed]
  5. R. M. Balachandran, N. M. Lawandy, in Quantum Electronics and Laser Science, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), postdeadline paper QPD15.
  6. R. M. Balachandran, N. M. Lawandy, in Digest of Annual Meeting (Optical Society of America, Washington, D.C., 1994), paper TuN1.
  7. D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
    [CrossRef] [PubMed]
  8. B. D. Soffer, B. B. McFarlane, Appl. Phys. Lett. 10, 266 (1967).
    [CrossRef]
  9. L. E. Erickson, A. Szabo, Appl. Phys. Lett. 18, 433 (1971).
    [CrossRef]
  10. U. Ganiel, A. Hardy, D. Treves, IEEE J. Quantum Electron. QE-12, 704 (1976).
    [CrossRef]
  11. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 4, p. 182.

1995 (3)

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, Nature (London) 373, 203 (1995).
[CrossRef]

R. M. Balachandran, N. M. Lawandy, Opt. Lett. 20, 1271 (1995).
[CrossRef] [PubMed]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

1976 (1)

U. Ganiel, A. Hardy, D. Treves, IEEE J. Quantum Electron. QE-12, 704 (1976).
[CrossRef]

1971 (1)

L. E. Erickson, A. Szabo, Appl. Phys. Lett. 18, 433 (1971).
[CrossRef]

1967 (1)

B. D. Soffer, B. B. McFarlane, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, Nature (London) 373, 203 (1995).
[CrossRef]

R. M. Balachandran, N. M. Lawandy, Opt. Lett. 20, 1271 (1995).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

R. M. Balachandran, N. M. Lawandy, in Quantum Electronics and Laser Science, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), postdeadline paper QPD15.

N. M. Lawandy, A. S. L. Gomes, R. M. Balachandran, presented at the 1993 International Conference on Luminescence, University of Connecticut, Storrs, Conn., 1993.

R. M. Balachandran, N. M. Lawandy, in Digest of Annual Meeting (Optical Society of America, Washington, D.C., 1994), paper TuN1.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 4, p. 182.

Erickson, L. E.

L. E. Erickson, A. Szabo, Appl. Phys. Lett. 18, 433 (1971).
[CrossRef]

Ganiel, U.

U. Ganiel, A. Hardy, D. Treves, IEEE J. Quantum Electron. QE-12, 704 (1976).
[CrossRef]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

N. M. Lawandy, A. S. L. Gomes, R. M. Balachandran, presented at the 1993 International Conference on Luminescence, University of Connecticut, Storrs, Conn., 1993.

Hardy, A.

U. Ganiel, A. Hardy, D. Treves, IEEE J. Quantum Electron. QE-12, 704 (1976).
[CrossRef]

Lagendijk, A.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
[CrossRef] [PubMed]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, Nature (London) 373, 203 (1995).
[CrossRef]

R. M. Balachandran, N. M. Lawandy, Opt. Lett. 20, 1271 (1995).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

R. M. Balachandran, N. M. Lawandy, in Quantum Electronics and Laser Science, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), postdeadline paper QPD15.

N. M. Lawandy, A. S. L. Gomes, R. M. Balachandran, presented at the 1993 International Conference on Luminescence, University of Connecticut, Storrs, Conn., 1993.

R. M. Balachandran, N. M. Lawandy, in Digest of Annual Meeting (Optical Society of America, Washington, D.C., 1994), paper TuN1.

McFarlane, B. B.

B. D. Soffer, B. B. McFarlane, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Soffer, B. D.

B. D. Soffer, B. B. McFarlane, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Szabo, A.

L. E. Erickson, A. Szabo, Appl. Phys. Lett. 18, 433 (1971).
[CrossRef]

Treves, D.

U. Ganiel, A. Hardy, D. Treves, IEEE J. Quantum Electron. QE-12, 704 (1976).
[CrossRef]

van Albada, M. P.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
[CrossRef] [PubMed]

Wiersma, D. S.

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
[CrossRef] [PubMed]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 4, p. 182.

Appl. Phys. Lett. (2)

B. D. Soffer, B. B. McFarlane, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

L. E. Erickson, A. Szabo, Appl. Phys. Lett. 18, 433 (1971).
[CrossRef]

IEEE J. Quantum Electron (1)

U. Ganiel, A. Hardy, D. Treves, IEEE J. Quantum Electron. QE-12, 704 (1976).
[CrossRef]

Nature (2)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

N. M. Lawandy, R. M. Balachandran, Nature (London) 373, 203 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. S. Wiersma, M. P. van Albada, A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).
[CrossRef] [PubMed]

Other (4)

R. M. Balachandran, N. M. Lawandy, in Quantum Electronics and Laser Science, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), postdeadline paper QPD15.

R. M. Balachandran, N. M. Lawandy, in Digest of Annual Meeting (Optical Society of America, Washington, D.C., 1994), paper TuN1.

N. M. Lawandy, A. S. L. Gomes, R. M. Balachandran, presented at the 1993 International Conference on Luminescence, University of Connecticut, Storrs, Conn., 1993.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Chap. 4, p. 182.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used to study the injection-locking mechanism. The sample is pumped by 532-nm light from a frequency-doubled and Q-switched Nd:YAG laser and seeded with a Rhodamine 610 dye laser. P1, P2, Glan laser polarizers; A1, A2, 2.5-mm irises; FB, fiber bundle; BS, beam splitter.

Fig. 2
Fig. 2

Spectral response of the scattering gain medium during the injection-locking process. The medium used consisted of a 2 × 10−3 M solution of Kiton Red with 1.4 × 1011/cm3 TiO2 nanoparticles (250-nm diameter) in methanol. The response to the pump alone has been scaled up by a factor of 10. The inset shows the spectral collapse at all wavelengths other than the seed.

Fig. 3
Fig. 3

Injection-locked signal as a function of the seed fluence under a constant pump fluence. The peak height has been corrected for scattering of the seed off the sample. The straight line is the peak intensity of the emission in the absence of the seed.

Fig. 4
Fig. 4

Temporal response of the emission during the injection-locking process. The seed and the pump arrive at the sample simultaneously. The injection-seeded emission shows a response limited by the seed pulse width.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ = γ 0 B p I p B p I p + B L ( I L + I s ) + Γ ,
F min 8 π n 2 c Δ λ λ s 4 h ν s τ p ,

Metrics