Abstract

We report a widely tunable quasi-phase-matched optical parametric oscillator that uses periodically poled LiNbO3 with a multigrating structure. The device is tuned by translation of the crystal through the resonator and pump beam, with no realignment needed. With a 1.064-μm acousto-optically Q-switched Nd:YAG pump laser, we produced noncritically phase-matched tunable IR output from 1.36 to 4.83 μm. The threshold was 6 μJ for a 26-mm interaction length. The extraordinary polarization of LiNbO3 has better IR transmission than does the ordinary polarization, permitting operation at longer wavelengths with d33 quasi-phase matching than with conventional Type I birefringent phase matching.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For recent research on OPO’s, see the feature on optical parametric devices, J. Opt. Soc. Am. B 12, 2084–2320 (1995).
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  4. M. L. Bortz, M. Fujimura, M. M. Fejer, Electron. Lett. 30, 34 (1994).
    [CrossRef]
  5. Y. Ishigame, T. Suhara, H. Nishihara, Opt. Lett. 16, 375 (1991).
    [CrossRef] [PubMed]
  6. K. Mizuuchi, K. Yamamoto, M. Kato, H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
    [CrossRef]
  7. V. Pruneri, J. Webjörn, P. St, J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 2126 (1995).
    [CrossRef]
  8. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, Opt. Lett. 20, 52 (1995).
    [CrossRef] [PubMed]
  9. G. J. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
    [CrossRef]

1995 (4)

1994 (2)

K. Mizuuchi, K. Yamamoto, M. Kato, H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

M. L. Bortz, M. Fujimura, M. M. Fejer, Electron. Lett. 30, 34 (1994).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1991 (1)

1984 (1)

G. J. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Bortz, M. L.

M. L. Bortz, M. Fujimura, M. M. Fejer, Electron. Lett. 30, 34 (1994).
[CrossRef]

Bosenberg, W. R.

Byer, R. L.

Eckardt, R. C.

Edwards, G. J.

G. J. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Fejer, M. M.

Fujimura, M.

M. L. Bortz, M. Fujimura, M. M. Fejer, Electron. Lett. 30, 34 (1994).
[CrossRef]

Hanna, D. C.

V. Pruneri, J. Webjörn, P. St, J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 2126 (1995).
[CrossRef]

Ishigame, Y.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kato, M.

K. Mizuuchi, K. Yamamoto, M. Kato, H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

Lawrence, M.

G. J. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Miller, G. D.

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, M. Kato, H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

Myers, L. E.

Nishihara, H.

Pierce, J. W.

Pruneri, V.

V. Pruneri, J. Webjörn, P. St, J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 2126 (1995).
[CrossRef]

Russell, J.

V. Pruneri, J. Webjörn, P. St, J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 2126 (1995).
[CrossRef]

Sato, H.

K. Mizuuchi, K. Yamamoto, M. Kato, H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

St, P.

V. Pruneri, J. Webjörn, P. St, J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 2126 (1995).
[CrossRef]

Suhara, T.

Webjörn, J.

V. Pruneri, J. Webjörn, P. St, J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 2126 (1995).
[CrossRef]

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, M. Kato, H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

V. Pruneri, J. Webjörn, P. St, J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 2126 (1995).
[CrossRef]

Electron. Lett. (1)

M. L. Bortz, M. Fujimura, M. M. Fejer, Electron. Lett. 30, 34 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

K. Mizuuchi, K. Yamamoto, M. Kato, H. Sato, IEEE J. Quantum Electron. 30, 1596 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

G. J. Edwards, M. Lawrence, Opt. Quantum Electron. 16, 373 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Portion of the +z surface of a 0.5-mm-thick PPLN chip with multigrating regions etched with HF acid to reveal the domain structure. The lithographic mask consists of 25 gratings with periods from 26 to 32 μm in 0.25-μm steps. Each grating is 500 μm wide and separated by 50 μm. The left panel shows a portion with periods of 29 to 30.5 μm; the right panel shows a magnified view of the 29-μm-period grating. The length of the finished crystals is 26 mm.

Fig. 2
Fig. 2

Experimental setup for the multigrating QPM OPO. For tuning, the PPLN crystal is translated through the resonator so the pump beam interacts with different grating sections. No realignment is necessary. ROC, radius of curvature; HR, highly reflective.

Fig. 3
Fig. 3

OPO tuning as a function of grating period, achieved by translation of the PPLN crystal ~1 cm through 24 different grating sections. Phase matching is noncritical for all points. Temperature adjustment permits fine tuning. The theoretical curve is calculated from dispersion.9

Fig. 4
Fig. 4

Idler power for an uncoated PPLN OPO crystal pumped with 7-ns pulses at 1 kHz. The decrease in power at longer wavelengths is due to idler absorption in the PPLN crystal, reflectances of the cavity mirrors, and operation far from degeneracy.

Fig. 5
Fig. 5

Power transmission T and attenuation coefficient α of congruent LiNbO3, where T = exp(−αL) for crystal length L. Transmission data are normalized by the Fresnel reflections to give internal transmission of a 9- mm-thick sample. Attenuation coefficient is a fit to the normalized transmission of 0.5-, 1-, and 9-mm-long pieces, plus a 25-mm-long piece for the ordinary case. (The peak in the attenuation coefficient at ~2.9 μm is omitted for clarity.)

Metrics