Abstract

We demonstrate a novel technique for converting a continuous-wave laser beam into a stable train of short pulses with a high repetition rate. The system, which is generally applicable, is based on a purely passive coupled-cavity optical frequency comb generator, which ensures a high overall efficiency. The repetition rate of the device is determined by the drive frequency of an electro-optic modulator and the pulse width by the rf power applied to the modulator. We have observed pulses down to 3.3 ps long at a 5.34-GHz repetition rate and an overall efficiency of 11%. The experimental results for pulse shape and width show excellent quantitative agreement with the results of a simple model.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
    [CrossRef]
  2. L. R. Brothers, D. Lee, N. C. Wong, Opt. Lett. 19, 245 (1994).
    [CrossRef] [PubMed]
  3. K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi, T. Enami, M. Ohtsu, Opt. Lett. 20, 410 (1995).
    [CrossRef] [PubMed]
  4. A. S. Bell, G. M. Macfarlane, E. Riis, A. I. Ferguson, Opt. Lett. 20, 1435 (1995).
    [CrossRef] [PubMed]
  5. B. H. Kolner, Appl. Phys. Lett. 52, 1122 (1988).
    [CrossRef]
  6. A. A. Godil, B. A. Auld, D. M. Bloom, Appl. Phys. Lett. 62, 1047 (1992).
    [CrossRef]
  7. T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1971).
    [CrossRef]
  8. T. Kobayashi, A. Morimoto, B. Y. Lee, T. Sueta, in Ultrafast Phenomena VII, Vol. 53 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1990), p. 41.
    [CrossRef]
  9. T. Kobayashi, A. Morimoto, T. Fujita, K. Amano, T. Uemura, T. Sueta, in Ultrafast Phenomena V (Springer-Verlag, Berlin, 1986), p. 134.
  10. G. J. Hall, A. I. Ferguson, Opt. Lett. 19, 557 (1994).
    [CrossRef] [PubMed]
  11. I. P. Kaminow, W. M. Sharpless, Appl. Opt. 6, 351 (1967).
    [CrossRef] [PubMed]
  12. R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  13. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991).

1995

1994

1993

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

1992

A. A. Godil, B. A. Auld, D. M. Bloom, Appl. Phys. Lett. 62, 1047 (1992).
[CrossRef]

1988

B. H. Kolner, Appl. Phys. Lett. 52, 1122 (1988).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1971

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1971).
[CrossRef]

1967

Amano, K.

T. Kobayashi, A. Morimoto, T. Fujita, K. Amano, T. Uemura, T. Sueta, in Ultrafast Phenomena V (Springer-Verlag, Berlin, 1986), p. 134.

Auld, B. A.

A. A. Godil, B. A. Auld, D. M. Bloom, Appl. Phys. Lett. 62, 1047 (1992).
[CrossRef]

Awaji, Y.

Bell, A. S.

Bloom, D. M.

A. A. Godil, B. A. Auld, D. M. Bloom, Appl. Phys. Lett. 62, 1047 (1992).
[CrossRef]

Brothers, L. R.

Cho, Y.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1971).
[CrossRef]

de Labachelerie, M.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Enami, T.

Ferguson, A. I.

Ford, G. M.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Fujita, T.

T. Kobayashi, A. Morimoto, T. Fujita, K. Amano, T. Uemura, T. Sueta, in Ultrafast Phenomena V (Springer-Verlag, Berlin, 1986), p. 134.

Godil, A. A.

A. A. Godil, B. A. Auld, D. M. Bloom, Appl. Phys. Lett. 62, 1047 (1992).
[CrossRef]

Hall, G. J.

Hall, J. L.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kaminow, I. P.

Kobayashi, T.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1971).
[CrossRef]

T. Kobayashi, A. Morimoto, T. Fujita, K. Amano, T. Uemura, T. Sueta, in Ultrafast Phenomena V (Springer-Verlag, Berlin, 1986), p. 134.

T. Kobayashi, A. Morimoto, B. Y. Lee, T. Sueta, in Ultrafast Phenomena VII, Vol. 53 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1990), p. 41.
[CrossRef]

Kolner, B. H.

B. H. Kolner, Appl. Phys. Lett. 52, 1122 (1988).
[CrossRef]

Kourogi, M.

Kowalski, K. V.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Lee, B. Y.

T. Kobayashi, A. Morimoto, B. Y. Lee, T. Sueta, in Ultrafast Phenomena VII, Vol. 53 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1990), p. 41.
[CrossRef]

Lee, D.

Macfarlane, G. M.

Matsuo, Y.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1971).
[CrossRef]

Morimoto, A.

T. Kobayashi, A. Morimoto, T. Fujita, K. Amano, T. Uemura, T. Sueta, in Ultrafast Phenomena V (Springer-Verlag, Berlin, 1986), p. 134.

T. Kobayashi, A. Morimoto, B. Y. Lee, T. Sueta, in Ultrafast Phenomena VII, Vol. 53 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1990), p. 41.
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Nakagawa, K.

Ohtsu, M.

Riis, E.

Sharpless, W. M.

Sueta, T.

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1971).
[CrossRef]

T. Kobayashi, A. Morimoto, T. Fujita, K. Amano, T. Uemura, T. Sueta, in Ultrafast Phenomena V (Springer-Verlag, Berlin, 1986), p. 134.

T. Kobayashi, A. Morimoto, B. Y. Lee, T. Sueta, in Ultrafast Phenomena VII, Vol. 53 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1990), p. 41.
[CrossRef]

Uemura, T.

T. Kobayashi, A. Morimoto, T. Fujita, K. Amano, T. Uemura, T. Sueta, in Ultrafast Phenomena V (Springer-Verlag, Berlin, 1986), p. 134.

Ward, H.

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Wong, N. C.

Yariv, A.

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991).

Appl. Opt.

Appl. Phys. B

R. W. P. Drever, J. L. Hall, K. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Appl. Phys. Lett.

B. H. Kolner, Appl. Phys. Lett. 52, 1122 (1988).
[CrossRef]

A. A. Godil, B. A. Auld, D. M. Bloom, Appl. Phys. Lett. 62, 1047 (1992).
[CrossRef]

T. Kobayashi, T. Sueta, Y. Cho, Y. Matsuo, Appl. Phys. Lett. 21, 341 (1971).
[CrossRef]

IEEE J. Quantum Electron.

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Opt. Lett.

Other

T. Kobayashi, A. Morimoto, B. Y. Lee, T. Sueta, in Ultrafast Phenomena VII, Vol. 53 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1990), p. 41.
[CrossRef]

T. Kobayashi, A. Morimoto, T. Fujita, K. Amano, T. Uemura, T. Sueta, in Ultrafast Phenomena V (Springer-Verlag, Berlin, 1986), p. 134.

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. A Faraday isolator is used to prevent feedback from the optical cavities to the Nd:YAG laser. The first EOM is used to provide the sidebands to lock the cavity formed by M1 and M2 to the laser frequency. The signal from the fast photodiode is demodulated to provide an error signal to lock the second cavity formed by M2–M4. The error signal is integrated and amplified before being used to drive the piezoelectric transducer on M4. A’s, amplifiers; DBM, double-balanced mixer.

Fig. 2
Fig. 2

Typical output pulse from the autocorrelator. This output pulse shown is for 1.4 W of rf power incident upon the modulator. The pulse width is measured at FWHM as 3.3 ps. The points are experimental data, and the solid curve is a fitted curve assuming a Lorentzian line shape in the electric field.

Fig. 3
Fig. 3

Response of pulse width with respect to the modulation index. The incident rf power upon the modulator is varied to produce a varying modulation index. The pulse width shows good agreement with the predicted dependence on modulation index with a gradient of 0.42 ps−1 compared with the predicted value of 0.45 ps−1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) [ 1 1 + ( 4 f m m F t ) 2 ] E in ,
Δ τ p = ( 2 - 1 ) 1 / 2 2 f m m F .

Metrics