Abstract

Second-harmonic generation in polycrystalline pentacene films of submicrometer thickness by pulses of 18-fs duration is studied. We observe a second-order nonlinearity of as much as deff = 0.045 pm/V, which is resonantly enhanced at wavelengths near 790 nm. Off-resonance autocorrelation studies demonstrate a quasi-instantaneous nonlinear response of the material, whereas experiments on resonance point to a finite response time T2 of the order of 15 fs.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a review see E. P. Ippen, C. V. Shank, in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, New York, 1977), p. 83.
  2. A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
    [CrossRef]
  3. M. A. Mortazavi, D. Yankelevich, A. Dienes, A. Knoesen, S. T. Kowel, S. Dijaili, Appl. Opt. 28, 3278 (1989).
    [CrossRef] [PubMed]
  4. D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
    [CrossRef]
  5. P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  6. W. Hofberger, Phys. Status Solidi A 30, 271 (1975).
    [CrossRef]
  7. K. O. Lee, T. T. Gan, Chem. Phys. Lett. 51, 120 (1977).
    [CrossRef]
  8. P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993).
    [CrossRef] [PubMed]
  9. Y. J. Lu, S. L. Lee, Int. J. Quantum Chem. 44, 773 (1992).
    [CrossRef]
  10. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  11. L. Goodman, R. P. Rava, Acc. Chem. Res. 17, 250 (1984).
    [CrossRef]
  12. See, e.g., E. T. J. Nibbering, D. A. Wiersma, K. Duppen, Phys. Rev. Lett. 66, 2464 (1991).
    [CrossRef] [PubMed]
  13. A. Gierulski, G. Marowsky, B. Nikolaus, N. Vorobev, Appl. Phys. B 36, 133 (1985).
    [CrossRef]

1993 (1)

1992 (2)

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

Y. J. Lu, S. L. Lee, Int. J. Quantum Chem. 44, 773 (1992).
[CrossRef]

1991 (1)

See, e.g., E. T. J. Nibbering, D. A. Wiersma, K. Duppen, Phys. Rev. Lett. 66, 2464 (1991).
[CrossRef] [PubMed]

1989 (1)

1985 (1)

A. Gierulski, G. Marowsky, B. Nikolaus, N. Vorobev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

1984 (1)

L. Goodman, R. P. Rava, Acc. Chem. Res. 17, 250 (1984).
[CrossRef]

1983 (1)

A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
[CrossRef]

1977 (1)

K. O. Lee, T. T. Gan, Chem. Phys. Lett. 51, 120 (1977).
[CrossRef]

1975 (1)

W. Hofberger, Phys. Status Solidi A 30, 271 (1975).
[CrossRef]

Brabec, T.

Curley, P. F.

Dienes, A.

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

M. A. Mortazavi, D. Yankelevich, A. Dienes, A. Knoesen, S. T. Kowel, S. Dijaili, Appl. Opt. 28, 3278 (1989).
[CrossRef] [PubMed]

Dijaili, S.

Duppen, K.

See, e.g., E. T. J. Nibbering, D. A. Wiersma, K. Duppen, Phys. Rev. Lett. 66, 2464 (1991).
[CrossRef] [PubMed]

Gan, T. T.

K. O. Lee, T. T. Gan, Chem. Phys. Lett. 51, 120 (1977).
[CrossRef]

Gierulski, A.

A. Gierulski, G. Marowsky, B. Nikolaus, N. Vorobev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

Goodman, L.

L. Goodman, R. P. Rava, Acc. Chem. Res. 17, 250 (1984).
[CrossRef]

Hofberger, W.

W. Hofberger, Phys. Status Solidi A 30, 271 (1975).
[CrossRef]

Ippen, E. P.

For a review see E. P. Ippen, C. V. Shank, in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, New York, 1977), p. 83.

Knoesen, A.

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

M. A. Mortazavi, D. Yankelevich, A. Dienes, A. Knoesen, S. T. Kowel, S. Dijaili, Appl. Opt. 28, 3278 (1989).
[CrossRef] [PubMed]

Kowel, S. T.

Krausz, F.

Lee, K. O.

K. O. Lee, T. T. Gan, Chem. Phys. Lett. 51, 120 (1977).
[CrossRef]

Lee, S. L.

Y. J. Lu, S. L. Lee, Int. J. Quantum Chem. 44, 773 (1992).
[CrossRef]

Lu, Y. J.

Y. J. Lu, S. L. Lee, Int. J. Quantum Chem. 44, 773 (1992).
[CrossRef]

Marowsky, G.

A. Gierulski, G. Marowsky, B. Nikolaus, N. Vorobev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

Mortazavi, M. A.

Nibbering, E. T. J.

See, e.g., E. T. J. Nibbering, D. A. Wiersma, K. Duppen, Phys. Rev. Lett. 66, 2464 (1991).
[CrossRef] [PubMed]

Nikolaus, B.

A. Gierulski, G. Marowsky, B. Nikolaus, N. Vorobev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

Prasad, P. N.

P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Rava, R. P.

L. Goodman, R. P. Rava, Acc. Chem. Res. 17, 250 (1984).
[CrossRef]

Schmidt, A. J.

Schoenlein, R. W.

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

Shank, C. V.

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

For a review see E. P. Ippen, C. V. Shank, in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, New York, 1977), p. 83.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Spielmann, Ch.

Vorobev, N.

A. Gierulski, G. Marowsky, B. Nikolaus, N. Vorobev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

Weiner, A. M.

A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
[CrossRef]

Wiersma, D. A.

See, e.g., E. T. J. Nibbering, D. A. Wiersma, K. Duppen, Phys. Rev. Lett. 66, 2464 (1991).
[CrossRef] [PubMed]

Williams, D. J.

P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Wintner, E.

Yankelevich, D.

Yankelevich, D. R.

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

Acc. Chem. Res. (1)

L. Goodman, R. P. Rava, Acc. Chem. Res. 17, 250 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Gierulski, G. Marowsky, B. Nikolaus, N. Vorobev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

Chem. Phys. Lett. (1)

K. O. Lee, T. T. Gan, Chem. Phys. Lett. 51, 120 (1977).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[CrossRef]

A. M. Weiner, IEEE J. Quantum Electron. 19, 1276 (1983).
[CrossRef]

Int. J. Quantum Chem. (1)

Y. J. Lu, S. L. Lee, Int. J. Quantum Chem. 44, 773 (1992).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

See, e.g., E. T. J. Nibbering, D. A. Wiersma, K. Duppen, Phys. Rev. Lett. 66, 2464 (1991).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

W. Hofberger, Phys. Status Solidi A 30, 271 (1975).
[CrossRef]

Other (3)

For a review see E. P. Ippen, C. V. Shank, in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, New York, 1977), p. 83.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Absorption spectrum of a 150-nm-thick polycrystalline film of pentacene upon quartz. Inset: Structure of the hydrocarbon pentacene. (b) Intensity of the SH from a 300-nm-thick film versus average power of the incoming train of 20-fs pulses (filled circles, logarithmic abscissa and ordinate). The data follow a quadratic power law (solid curve).

Fig. 2
Fig. 2

(a) Spectral dispersion of the SH generated with tunable 100-fs pulses (diamonds). The spectrally integrated intensity from a 300-nm-thick pentacene film is plotted versus wavelength and shows a resonance at 395 nm. Dashed curve: calculated Lorentzian profile. (b) Normalized spectra of the SH generated with 20-fs pulses at different center wavelengths λF (circles). The data deviated from profiles calculated from the spectra of the fundamental with a constant nonlinearity and a quadratic power law (solid curves).

Fig. 3
Fig. 3

(a) Normalized single-scan autocorrelation traces recorded at a center wavelength λF = 870 nm (nonresonant case). The data measured with a 300-nm-thick pentacene film (filled circles) agree with measurements with a 100-μm-thick KDP crystal (solid curve) and give a pulse duration of ~18 fs for sech2-shaped pulses. (b) Results from autocorrelation studies close to the molecular resonance. The full width at half-maximum of autocorrelation functions for λF = 780 nm is plotted versus the prism position in the compressor. The data show a systematic broadening compared with results obtained with the KDP crystal (arrow).

Metrics